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Supervisor’s Foreword

Frustrated quantum magnets are one of the main subjects in the field of condensed
matter physics and quantum statistical physics as a physical system in which novel
quantum phases and quantum phase transitions can be realized. Spin-phonon
coupling, the coupling between the spin and the lattice degrees of freedom, is one
of the origins of spin frustration effects. In this thesis, Hidemaro Suwa has
developed new and effective simulation algorithms that enable the detailed
numerical analysis of the spin-phonon complex, and has revealed the nature of
ground state and quantum critical phenomena of quantum magnets with effective
frustrated interaction.

In Chap. 1, the spin-Peierls system, a typical spin-phonon complex, is intro-
duced together with the difficulties and unsolved problems in that system. Espe-
cially, the demand for a novel numerical technique that can connect the adiabatic
and anti-adiabatic limits, and the importance of the high dimensionality, i.e., the
effects of interchain coupling, are emphasized. In Chap. 2, a generic Markov chain
Monte Carlo algorithm that can greatly improve the convergence and relaxation of
a Markov chain is proposed. The main idea here is expressing the problem of
determination of transition probabilities for constructing a Markov chain as a
geometric allocation (landfilling) problem. By using this new representation, it is
shown that one can construct a rejection-minimized Markov chain that satisfies the
balance condition without imposing a detailed balance. In Chap. 3, a new quantum
Monte Carlo algorithm for the spin-Peierls system is presented. The standard
worm algorithm, which is one of the most generic algorithms for the quantum
lattice models, cannot be used for the spin-Peierls model as the number of bosons
(quantum phonons) does not converge due to the spin-phonon coupling. In this
thesis, several new techniques, such as the warp update and measuring off-diag-
onal Green’s function, have been introduced in order to treat such a particle-
number non-conserved system. In Chap. 4, a new finite-size scaling analysis
technique, a combination of the level spectroscopy method, and the quantum
Monte Carlo method, is proposed. This method is especially effective for the
Kosterlitz-Thouless transition, for which the conventional finite-size scaling does
not work at all.

By using the numerical techniques presented in the previous chapters, large-
scale simulations for one and higher dimensional spin-Peierls systems have been
performed in Chaps. 5 and 6. For one dimension, the ground-state phase diagram
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of the XXZ spin-Peierls model is determined precisely by the level spectroscopy,
and it is concluded that the ground-state phase diagram of the spin-Peierls system
is qualitatively the same as in the frustrated zig-zag spin model realized in the anti-
adiabatic limit; and thus the adiabatic limit and the anti-adiabatic one are con-
nected continuously. In higher dimensions, the effects of interchain coupling are
studied in detail. It is shown that in the case where the effective interchain
interaction caused by the spin-phonon coupling has no frustration, the gapped
dimer phase appears as soon as an infinitesimally weak interchain interaction is
introduced. On the other hand, however, in the case where the effective couplings
frustrate each other, it is demonstrated clearly that a two-dimensional quantum
liquid phase is realized for the weak interchain coupling regime, which is also
expected in the two-dimensional frustrated spin models.

To conclude, in this thesis, a promising approach for analyzing the frustrated
quantum magnets has been demonstrated for the novel spin liquid phase and the
exotic quantum phase transitions in the one- and two-dimensional spin-Peierls
models. I believe this will have a great impact on the future studies of strongly
correlated electron systems. Furthermore, the new numerical techniques developed
for the Markov Chain Monte Carlo are quite generic and versatile, and are natu-
rally expected to spread to all the fields of computational science.

Tokyo, July 2013 Synge Todo

viii Supervisor’s Foreword
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Chapter 1
Introduction

Frustrated quantum spin systems contain rich physical structures of nontrivial
quantum states and phase transitions. Competing interactions can suppress any
classical long-range order even at zero temperature and the system is fully gov-
erned by the strong quantum fluctuation, which is called the quantum spin liquid
[3, 9]. As a result, it is predicted that an exotic or a fractional excitation character-
izes the low-energy physics, such as the vison (Z2 vortex) [42, 71] or the spinon
(quark in the condensed matter) [4]. The origin of frustration can be a geometric
structure or a long-range interaction and so on. Experimentally, the organic com-
pounds, κ-(BEDT-TTF)2Cu2(CN)3 [72] and EtMe3Sb[Pd(dmit)2]2 [36], which can
be modeled as the S=1/2 quantum spin system on the triangular lattice, show no
magnetic order even at very low temperatures. In addition, the materials forming
the kagomé lattice, ZnCu3(OH)6Cl2 (herbertsmithite) [49] and BaCu3V2O8(OH)2
(vesignieite) [57], are also candidates of the quantum spin liquid, while a peculiar
order was observed in another kagomé lattice system, Cu3V2O7(OH)2 · 2H2O (vol-
borthite) [34]. On the other hand, the role of farther spin interactions have been
investigated theoretically. It has been reported, for example, that the next-nearest
neighbor interaction on the square lattice [69] and honeycomb lattice [2] brings
about an interesting liquid phase in a finite parameter range; classical models usually
does not produce such a finite-range disorder phase at absolute zero temperature. It
is very important to elucidate the mechanism of the frustrated quantum spin systems
as a grand challenge in the condensed matter physics and the materials design.

The farther spin-spin interactions stem from a coupling with other degrees of
freedom in many realistic materials. Among them, the spin-lattice interaction has
a large contribution for the determination of the effective spin interaction. As a
system dominated by the spin-lattice interaction, a spin-Peierls system has caught
the attention for a long time. When the decrease in energy by dimerization, forming
spin singlet pairs, exceeds the increase by lattice distortion, the spin-Peierls system
turns into the dimer phase, which is called the spin-Peierls transition. This formation
of the singlet pairs results entirely from the quantum nature of the spin degrees of
freedom. The analysis of this system and transition will bring understanding of the
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role of lattice degrees of freedom and nontrivial frustrated spin systems in condensed
matter physics.

In the spin-Peierls system, the quantum effect of the lattice degree of freedom
is controversial. The hybridization of the two degrees of freedom depends on the
difference of the energy scales. Theoretically, two limiting cases have been mainly
investigated in the system: the adiabatic limit and the antiadiabatic limit. The former
case, where the energy scale of the phonon is much smaller than that of the spin
and the quantum nature of lattice is ignored, is approximately realized in some
organic materials: for example, TTF-CuBDT [15, 37] found as the first spin-Peierls
material in 1975. The low-energy physics is described by the S=1/2 one-dimensional
antiferromagnetic Heisenberg chain coupled with the lattice degree of freedom in the
harmonic potential. Cross and Fisher [23] analyzed this model by using the abelian
bosonization method [30] combined with the random phase approximation (RPA)
in the adiabatic limit. Their theory seems effective to the organic materials because
a soft phonon mode that was one of the assumptions in their theory was actually
observed in the experiments.

The Cross-Fisher theory is, however, considered to be not valid to CuGeO3
[5, 32, 40, 65, 73, 80] that was discovered as the first inorganic spin-Peierls material
in 1993. It is because that the energy scale of phonon is the same order with that
of spin [13, 14], which is away from the adiabatic region, and no soft phonon was
observed experimentally. Interestingly, Gros and Werner [31] showed later that the
RPA treatment does not always result in the soft phonon. They argued the validity of
the Cross-Fisher theory to the inorganic compound, comparing with the phenomeno-
logical theories for the central peak occurring in structural phase transitions [16]. In
addition, Pouget et al. [60, 61] discussed the comparison between the RPA calcula-
tion and the experimental data in the correlation length. They argued that the phonon
spectral function calculated by the mean-field treatment supported well the phe-
nomenological theories. About the dynamical property, furthermore, the magnetic
excitation spectrum with the static dimerization, which corresponds to the adiabatic
limit, has been calculated; there, the magnon peak and the soliton continuum have
been interestingly compared to the experimental data [79, 82]. As stated above, the
possibility of explaining the experimental data of the inorganic material from the
adiabatic limit is still being discussed.

Nevertheless, the discovery of CuGeO3 triggered many theoretical approaches
from the antiadiabatic limit: the perturbation expansion [45], the linked cluster expan-
sion [78], the Lanczos diagonalization method [6, 7, 17, 87], the flow equation
method [63, 64, 81], the unitary transformation [1, 85, 86, 88], and the density
matrix renormalization group (DMRG) [18, 20, 38, 59, 85]. According to these
approaches, tracing out the phonon degree of freedom produces a long-range spin
interaction and an effective frustration. Perticularly, the next-nearest neighbor antifer-
romagnetic interaction (J2) plays an essential role for the construction of the singlet
dimers as the famous Majumdar-Ghosh point [47].

Intriguingly, these two limits produce a qualitatively different phase diagram. In
the adiabatic limit, the lattice degree of freedom is nothing but a classical parameter,
and the phase diagram is the same with the spin model with the alternating interaction.
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The alternating XXZ spin model can be mapped onto the quantum Ashkin-Teller
model [43], the hidden Z2 × Z2 symmetry [39] being manifested. For the isotropic
Heisenberg point, the infinitesimal alternation that corresponds to the infinitesimal
spin-lattice coupling drives the ground state into the dimer phase. This alternating-
bond model, in the meanwhile, can be mapped to the quantum sine-Gordon model
with double frequencies [25, 27, 41, 68] through the bosonization technique. There,
the alternating interaction term is relevant; the corresponding critical dimension
is 1/2, being less than the system dimension 2. Thus the gap is instantaneously
formed by introducing the relevant interaction. These analyses and the Cross-Fisher
conclusion are totally consistent.

In the antiadiabatic limit, on the other hand, a simple effective model is the frus-
trated J1-J2 spin model [45, 85]. This model can also be transformed to the quantum
sine-Gordon model [45, 54]. For the isotropic point, in this case, the next-nearest
neighbor J2 term is reduced to the marginal interaction term in the sine-Gordon
model. When the marginal term becomes zero, the Kosterlitz-Thouless (KT) type [44]
quantum phase transition from the Tomonaga-Luttinger liquid phase to the dimer
phase occurs [28]. This transition is corresponding to the pairing of spinless fermion
at half filling in the Su-Schrieffer-Heeger model [74], which is clear through the
Jordan-Wigner transformation. That is, the antiadiabaticity brings about the critical
point at a finite spin-phonon interaction.

The question is, then, how the two limits connect with each other. For this crossover
problem, the self-consistent harmonic approximation [21, 24, 52] and the renormal-
ization group (RG) method [8, 19, 21, 28, 75] have been applied to the effective
models. Particularly, Sun et al. [75] solved numerically the RG equations of the
effective action and obtained the phase diagram of the XXZ spin-Peierls model over
the whole adiabaticity. About this analysis, however, Citro et al. [21] claimed that the
result was not correct because an invalid scaling [84] was used. The phase diagram
needs to be investigated by a more reliable approach. In addition, some realistic
materials have been found where the ratio of the spin and phonon energy scales is
away from the two limits, such as CuGeO3 and MEM(TCNQ)2 [12, 35, 83]. The
mechanism of the phase transitions are still contentious.

Not only for understanding the difference between the limits but also for explain-
ing the behavior of realistic materials, it is important to analyze the crossover between
them. An accurate calculation for the intermediate region, however, has been diffi-
cult because of the complexity of the system. Meanwhile, it is expected that the
quantum Monte Carlo (QMC) method can treat the large-scale spin-Peierls system
without approximation, but the conventional methods [46, 48, 51, 58, 64, 67] cannot
calculate it efficiently as we will explain in detail in Chap. 3.

On these backgrounds, we will introduce a novel quantum Monte Carlo method
that can correctly treat the particle-number-nonconserving system, such as the spin-
Peierls model. We extend further the worm [62] (directed-loop [77]) algorithm that
is now the most robust and standard method of the QMC update method based on
the worldline representation [11, 66, 76]. There, the worm-bounce process that is
a kind of rejection has been a bottleneck of the method for efficient calculations.
For the determination of transition probability, usually, the detailed balance equation
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is solved as the Metropolis (or Metropolis-Hastings) algorithm [33, 50] or the heat
bath algorithm (Gibbs sampler) [10, 22, 29]. However, these canonical algorithms
are not optimal. We, in the present thesis, invent a new optimization method for
the transition kernel of Markov chain; rewriting the algebraic problem into a geo-
metric problem, we indeed always minimize the average rejection rate. Applying
the geometric optimization method, we completely eliminate the bounce process of
bosonic-worm scattering in the spin-Peierls model. This is a crucial improvement for
correct calculations. As a remarkable point, our algorithm is the first Markov chain
Monte Carlo method that is free from the detailed balance for general cases since
the invention of the method in 1953 [50].

For the analysis of the spin-Peierls transitions, a tricky problem remains; it is
extremely difficult to apply the finite-size scaling method for the KT transition
[26, 70]. In the meanwhile, the level spectroscopy [53–56] was first developed for
the determination of the critical point of the frustrated J1-J2 spin model. The method
powerfully performed for the analyses of the difficult phase transitions, such as the
KT transition, where the strong finite-size effect hinders us to extrapolate the ther-
modynamic limit correctly. The combination of the level spectroscopy and the QMC
method sounds fascinating, but it is not trivial because the needed energy gaps cannot
be accurately calculated by the conventional way. In the present thesis, we propose
a new gap-estimator sequence that converges a true gap value without systematic
error. By calculating the energy gap in terms of the useful estimators, we make it
possible, for the first time, to combine the level spectroscopy with the QMC method.

Fully utilizing the above novel methods, we will elucidate the phase diagram of
the XXZ spin-Peierls chain. Surprisingly, even under the small quantum effect of the
lattice degree of freedom, the ground state and the universality class are consistent to
the frustrated J1-J2 spin model, which is a simple effective model in the antiadiabatic
limit. We will show the previous RG analysis is not correct. The universality class
is unambiguously identified by the QMC level spectroscopy. We will also show the
calculations of the spin velocity and the central charge that are important physical
quantities in the conformal field theory, for the first time by the QMC method.

From the other point of view, we can indeed simulate critical phenomena of
effectively frustrated quantum spin models. It has long been a big challenge to apply
the QMC technique to frustrated systems; the negative sign problem prevents us
from getting valid statistical averages. However, there is no negative sign over the
relevant parameter region in the spin-Peierls model. In other words, we are successful
in avoiding the problematic sign with the help of the quantum phonon degree of
freedom as an auxiliary field. This fact encourages us to apply the present methods
to more complex systems beyond the simple chain.

We investigate, in this thesis, the multi-chain and two-dimensional system where
the chains are connected by the lattice interaction through the harmonic potential.
This extension is natural because the lattice interaction does usually not have a
low-dimensional feature in contrast to the electron interaction; that is why it forms
the solid realistically. We will discuss that the system instantaneously turns into the
dimer phase with unfrustrated interchain phonon interaction, but, with full frustration,
the ground state is a nontrivial liquid state in weak coupling region and the phase
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transition to a dimer phase occurs at a finite spin-phonon coupling. This is the first
discovery of a two-dimensional liquid phase by the worldline QMC method for
effectively frustrated quantum spin models. The liquid ground state is presumably
described by the one-dimensional feature where the lowest excitation is the decon-
fined spinon.

The organization of the present thesis is as follows: In Chap. 2, we will propose
the geometric allocation algorithms for creating a transition kernel of Markov chain
after reviewing the previous research of optimized transition matrices. In Chap. 3,
the extended QMC method for nonconserved particles is presented together with
the detailed update of the spin-Peierls model being exemplified. In Chap. 4, we will
introduce the level spectroscopy and the new gap estimators accessed by the QMC
calculation. By the above three methods, the phase diagram and the universality class
of the XXZ spin-Peierls model are discussed in detail in Chap. 5. The ground state
of the multi-chain and the two-dimensional spin-Peierls system is investigated in
Chap. 6. Finally, the last chapter is the summary.
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Chapter 2
Geometric Allocation Approach in Markov
Chain Monte Carlo

2.1 Markov Chain Monte Carlo

The Monte Carlo method was first devised by Ulam et al. [61] in 1947, and it has
been enjoyed for a wide variety of applications in mathematics, physics, statistics,
etc. According to the literature, the method is defined as a simulation that solves a
deterministic problem by means of a stochastic way. Ulam and the coworkers used
the Monte Carlo method for neutron diffusion problem in fissile material of atomic
bombs and for the eigenvalue problem of the Schrödinger equation at Los Alamos
during the World War II. In the both applications, the average of random sampling
converges to a target integral.

Let s ∈ N be a dimension and D ⊂ Rs be an integral range on the Lebesgue
measure (now we assume D is compact as topological space for simplicity), x ∈ D
be a continuous state variable, f : Rs → R be an integrand function, and I be a
target integral defined as

I =
∫

D
f (x)dx, (2.1)

which takes a finite value. If f has a finite mean and we generate M independent
samples, x1, x2, . . ., in D, then the average of the function values at the samples

ÎM = 1

M

M∑
i=1

f (xi ) (2.2)

converges to the target value I almost surely, which is proved by the strong law of
large numbers:

ÎM
a.s.→ I. (2.3)

Moreover, if f has a finite variance v, the central limit theorem states the weak
convergence (convergence in distribution):
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√
M( ÎM − I )

d→ N (0, v). (2.4)

Here N (μ′, v′) is the normal (Gaussian) distribution with the mean μ′ and the
variance v′.

The key point of the method is how the samples are chosen. The simple uniform
sampling on the range D is feasible only for very low-dimensional problems. The
relative error of the Monte Carlo average gets exponentially large as the dimension
s becomes high, which is called the the curse of dimensionality [6]. For some low-
dimensional problems (typically s < 10 or 100), the quasi Monte Carlo techniques
have been developed [14, 33]. These are very useful in finance, for example; the price
of derivative needs to be calculated very quickly. The idea of the quasi Monte Carlo
is that the samples should be distributed in integral range with low “discrepancy” as
shown in the widely known Koksma-Hlawka inequality [27]. Some algorithms for
generation of low-discrepancy (artificial) sequence have been proposed, such as the
degital (t, m, s)-nets (including the Soboĺ sequence [53], the Faure sequence [17], and
the Niederreiter sequence [47]), the Halton sequence, the lattice rule, the Kronecker
sequence and so on. By using these artful sequences, the order of convergence is
drastically improved for some cases. For such a successful improvement, one of
the key concepts is the effective dimension that is corresponding to the number of
effective variables contributing to the variance of Monte Carlo average. Although
these recent techniques have many interesting applications, it is still difficult to work
well in high-dimensional problems including many physical systems.

An effective way for conquering the dimensional problem is the importance
sampling where samples that have larger contribution to the integral are selected
more often. The Markov chain Monte Carlo (MCMC) method [24, 32, 52] is a com-
putational method that approximately generates samples stochastically from any
target distribution. As a result of the importance sampling, an expectation value of a
function (an observable) O : X → R (X is a state space) on the target distribution
can be approximated from the simple average of the M samples:

〈O↑ =
∫

w(x) O(x)dx∫
w(x)dx

↓ 1

M

∑
i

O(xi ), (2.5)

where w : X → R is a weight function (measure). The MCMC method is a powerful
tool for systems with multiple degrees of freedom (correlated high-dimensional prob-
lem) that are very important in the condensed matter physics. In this thesis, we use
and extend the MCMC method for investigation of strongly correlated systems.

In the MCMC method, we start from an initial state (configuration), and the
next state is stochastically chosen depending on the present configuration. Then the
sequence of states (samples) constructs a Markov chain; the Markov property comes
from the fact of dependency only on the one-step previous state. In other words, we set
an initial distribution and continue to operate a kernel to the distribution at each Monte
Carlo step. When an ergodicity condition holds, the distribution converges to an



2.1 Markov Chain Monte Carlo 13

equilibrium distribution. In the end, we can get samples from the target (equilibrium)
distribution.

For a finite state space, the condition becomes easy if we take the natural discrete
topology for the state space. It is because every open set is closed in this topology
space and thus the Borel algebra (field) is trivial, which is the smallest closed set
including all open sets. For a general space, however, the convergence condition is
complicated. Usually, if a Markov chain is Harris positive recurrent and aperiodic,
the chain is called ergodic [41, 59].1 It is far from trivial to prove the ergodicity of a
Markov chain in general. Necessarily in many practical simulations, the condition is
simply assumed. Then, of course, we have to check the MC averages converge to the
correct value. About our simulations in this thesis, we first confirmed the correctness
by comparing with a more precise calculation, e.g., the numerical exact diagonal-
ization, in simple or small systems (the diagonalization can be done only when the
dimension of the Hilbert space is very small). Although we have not succeeded in
mathematically proving the ergodicity in some cases, such a check is convincing
enough to assure us the validity of the simulations. We, however, should keep in
mind the mathematical conditions especially when we try to develop and improve
the method.

Instead of the curse of dimensionality, the MCMC method suffers from the sample
correlation. Since the next configuration is generated (updated) from the previous
one, the samples are not independent of each other. Then the correlation gives rise
to two problems: we have to wait for the distribution convergence (equilibration)
before sampling, and the number of effective samples is decreased.

The former convergence problem is quantified by a distribution distance to the
target. In many cases, the total variation distance

‖ Pm(x, ·) − κ(·) ‖= sup
A∈B(X)

∣∣Pm(x, A) − κ(A)
∣∣ , (2.6)

is used, where B(X) is the Borel algebra, A is a Borel set, and Pm(x, A) = P(xm ∈
A|x0 = x) is the m-step transition probability. For a finite state space, this is corre-
sponding to the second largest eigenvalue in absolute value.

As an assessment for the latter problem, the decrease of the number of effective
samples, the integrated autocorrelation time is defined as

γint =
∞∑

t=1

C(t) (2.7)

C(t) = 〈Oi+t Oi ↑ − 〈O↑2

〈O2↑ − 〈O↑2 , (2.8)

1 In the literature of physics, the ergodicity is confused with the irreducibility in many cases. If
a state space is finite and a Markov chain is aperiodic, the ergodicity and the irreducibility are
equivalent but they differ in a general state space.



14 2 Geometric Allocation Approach in Markov Chain Monte Carlo

where Oi is an observable at the i-th Monte Carlo step, and C(t) is almost independent
of i after the distribution convergence. This autocorrelation decreases the number of
effective samples as

Meff ↓ M

1 + 2γint
, (2.9)

where M is the total number of samples in simulations. Although an MCMC method
satisfying appropriate conditions guarantees correct results asymptotically in prin-
ciple2 [41], variance reduction of relevant estimators is crucial for the method to
work in practice. If the central limit theorem holds, as we mentioned, the variance
of expectations decreases as v/M ↓ var( f )/Meff , where v is called the asymptotic
variance that depends on the integrand function and the update method through the
autocorrelation time.

What we have to concern is, thus, to shorten the distribution convergence (burn-in)
time and to reduce the asymptotic variance. Optimal strategies against these two
criteria must differ as we will explain in the next section. For most lattice systems
(Markov random fields), however, it is presumably possible to improve conventional
sampling methods in the both quantities. It is because the usual method is far from
the global optimal strategy in the both respect.

There are three key points for the MCMC method to be effective. One is the choice
of the ensemble. From the view of this respect, the extended ensemble methods, such
as the multicanonical method [7] and the replica exchange method [28], have been
proposed and applied successfully to protein folding problems, spin glasses, etc.
The second is the selection of candidate configurations. The cluster algorithms, e.g.,
the Swendsen-Wang algorithm [57] and the loop algorithm [16], can overcome the
critical slowing down by taking advantage of mapping to graph configurations in
many physical models.3 The hybrid (Hamiltonian) Monte Carlo method performs a
simultaneous move, where the candidate state is chosen by taking the advantage of
the Newtonian dynamics. The third is the determination of the transition probability,
given candidate configurations. We focus our interest on this optimization problem
of the probabilities in the following sections of this chapter.

2.2 Optimization of Transition Kernel

We will explain previous optimization approaches for transition kernel in the MCMC
method in this section. Let us consider a finite state space now for simplicity. In the
method, for the equilibrium distribution to be a target distribution, the (total) balance,
the invariance of target distribution,

2 All estimators measured in the MCMC method are biased. The ergodicity, however, ensures they
are (strong) consistent. That is, the sequence of Monte Carlo average converges to the correct result
in probability (almost surely).
3 The improved estimator on the graph configuration reduces also the variance of the integrand
function var(f).
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w(ci ) =
∑

j

w(ci )p(ci → c j ) =
∑

j

w(c j )p(c j → ci ) ∀ i, (2.10)

is imposed to the transition kernel.4 In this equation, p(ci → c j ) is a transition
probability from configuration ci to c j , and w(ci ) is an unnormalized weight (mea-
sure) of configuration ci that is proportional to the normalized weight κi . In most
practical implementations, the Metropolis-Hastings algorithm [26, 40] (we call it
simply the Metropolis algorithm below) or the heat bath algorithm [5, 11], namely,
the Gibbs sampler [23] have been used for the determination of the transition
probabilities. The next state is chosen by probability

p(ci → c j ) = 1

n − 1
min

(
1,

w(c j )

w(ci )

)
i ↔= j (2.11)

in the Metropolis algorithm, and

p(ci → c j ) = w(c j )∑
k w(ck)

∀ i, j (2.12)

in the heat bath algorithm among n candidate states. These canonical algorithms
satisfy the detailed balance, the reversibility,

w(ci )p(ci → c j ) = w(c j )p(c j → ci ) ∀ i, j, (2.13)

which is a sufficient condition for the total balance (2.47). Under this condition,
thanks to the simple property that every elementary transition balances with a cor-
responding inverse process (Fig. 2.1), it becomes easy to find a qualified transition
probability by solving the equation for each pair of configurations as the Metropolis
and the heat bath algorithm do. Attempts to optimizing the transition matrix have
concentrated within this sufficient condition so far. We will review the previous
optimization approaches below.

(a) (b)

Fig. 2.1 Stochastic flow with the detailed balance (a) and without it (b). In the former, the flow
balances with a corresponding inverse process. On the other hand, in the latter, a net stochastic flow
exists as the result of breaking the detailed balance

4 Note that there has been some interesting progress for generating samples from the target distri-
bution asymptotically, the transition kernel being modified in an adaptive procedure [3].
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2.2.1 Criteria of Markov Chain

Let S be a finite state space and n be the number of elements of S. Assume n is small
enough to calculate the transition probabilities from all states to all. The discussion
here can be easily extended to a conditional case in a huge state space; that is, we
choose a state variable and update it on the condition that other variables are fixed.
Let us also define an average of function f and inner product of f and g as

〈 f ↑ =
∑
s∈S

f (s)κ(s), (2.14)

and
〈 f, g↑κ =

∑
s∈S

f (s)g(s)κ(s), (2.15)

respectively. The following theorem connects the asymptotic variance and the
eigenvalues of the reversible transition matrix, which are always real.

Theorem 2.2.1 Let P be an irreducible and a reversible (w.r.t. κ ) stochastic matrix.
Let x(0), x(1),… be a Markov chain on state space S with transition matrix P and
f : S → R For any initial distribution,

v( f, P, κ) = lim
M→∞ M var

(
1

M

M−1∑
k=0

f [x(k)]
)

(2.16)

= 〈(I − P)−1(I + P)( f − 〈 f ↑1), f − 〈 f ↑1↑κ . (2.17)

This fact was proved first by Peskun [48]. Easy computations show that the above
limit is equal to

n∑
k=2

1 + λk

1 − λk
〈 f, ēk↑2

κ , (2.18)

where Pēk = λk ēk , ||ēk ||κ = 1. This is also described as

n∑
k=2

1 + λk

1 − λk
akvar( f ), (2.19)

where ak are some nonnegative constants such that
∑

k ak = 1. This formula links the
asymptotic variance v( f, P, κ) to the eigenvalues and eigenvectors of P . In order to
make the asymptotic variance small, it seems useful to use dynamics P with possibly
all negative and small eigenvalues (except the largest one which is 1). In this sense,
one can say that negative eigenvalues help the asymptotic variance get small.
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The negative eigenvalues, however, do not always help the weak convergence
(convergence in distribution) gets rapid. The m-step transition matrix Pm(x, y) =
P(xm = y|x0 = x) is represented as

Pm(x, y) =
n∑

k=1

ek(x)ek(y)λm
k . (2.20)

The dominant term becomes e1(·) = κ(·) for large m since λ1 = 1. It is clear that
the speed of the convergence depends on the second largest eigenvalue in absolute
value.

These two goals seem to be in different point. We also mention the noticeable
relation between them:

v( f, P, κ) ≤ 1 + |λ2|
1 − |λ2|var( f ) ≤ 2

1 − |λ2|var( f ). (2.21)

Therefore, the spectral gap 1 − |λ2| that determines the convergence rate gives also
the upper bound of the asymptotic variance.

If the convergence is so slow that it is not possible to ignore the intrinsic bias of the
MCMC sampler, we have to reduce the absolute value of the second eigenvalue. Once
the equilibrium state becomes accessible in feasible time, the statistical efficiency,
the asymptotic variance is more important to calculation.

2.2.2 Peskun’s Theorem

There is a simple theorem as a guideline for the optimization. Let X be a discrete
random variable following distribution κ , and let P be the transition matrix of a
Markov chain with κ as its invariant distribution. Following Peskun [48], we define
P2 ≥ P1 for any two transition matrices if each of the off-diagonal elements of P2 is
grater than or equal to the corresponding off-diagonal elements of P1. The following
lemma is Theorem 2.1.1 of Peskun [48].

Lemma 2.2.1 (Peskun) Suppose each of the irreducible transition matrices P1 and
P2 is reversible for the same invariant probability distribution κ . If P2 ≥ P1, then,
for any f ,

v( f, P1, κ) ≥ v( f, P2, κ), (2.22)

where
v( f, P, κ) = lim

M→∞ M var( ÎM ), (2.23)

and ÎM = ∑M
i=1 f (xi )/M is an estimator of I = Eκ ( f ) using M consecutive

samples from the Markov chains.
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Based on this theorem, a modified Gibbs sampler called the “Metropolized Gibbs
sampler” was proposed by Liu [34, 35]. Assume ordering of the states as κ1 ≤ κ2 ≤
· · · ≤ κn , where κi = wi/

∑
i wi . In the heat bath algorithm, we choose the next

state with forgetting the current state. Meantime, it is obvious that the rejection that
the current state is chosen as the next state should be avoided as much as possible
from the Peskun’s theorem. Then, some will think we can exclude the current state at
first proposal and use the Metropolis algorithm for going to the chosen state actually.
Applying the heat bath algorithm at the first proposal seems plausible. This modified
Gibbs sampler is reduced to the Metropolis algorithm for n = 2, not to the usual
Gibbs sampler, which is also called the Barker’s algorithm [5]. That is why it is
called the Metropolized Gibbs sampler. By this approach, the transition matrix P is
described as

P MG
i j = min(κi/(1 − κ j ), κi/(1 − κi )). (2.24)

The matrix forms as

P MG =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 κ1
1−κ1

κ1
1−κ1

· · · κ1
1−κ1

κ2
1−κ1

1 − · · · κ2
1−κ2

· · · κ2
1−κ2

κ3
1−κ1

κ3
1−κ2

1 − · · · · · · κ3
1−κ3

...
...

...
. . .

...

κn
1−κ1

κn
1−κ2

κn
1−κ3

· · · 1 − · · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.25)

where Pi j is the transition probability from j to i . Let P HB be the transition matrix
by using the normal heat bath algorithm. It follows that P MG ≥ P HB and hence the
Peskun’s theorem says the following theorem.

Theorem 2.2.2 The Metropolized Gibbs sampler for discrete random variables as
defined above is statistically more efficient than the usual heat bath algorithm (Gibbs
sampler).

2.2.3 Worst Case Solution

The above “Metropolization” always set to zero the diagonal element for the smallest-
weight states. Interestingly, Frigessi et al. [21] showed that this procedure gives a
kind of optimal property. Let us follow their theorems below.

At first, we have a general fact about the second largest eigenvalue as follows.

Theorem 2.2.3 (Frigessi, Hwang, Younes 1) (a) The second largest eigenvalue of
any stochastic matrix P, reversible w.r.t. κ , is greater than or equal to
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− κ1

1 − κ1
. (2.26)

For all matrices whose second largest eigenvalue attains this lower bound, the
corresponding eigenvector is

e2 = (1 − κ1,−κ1, . . . ,−κ1)
T . (2.27)

Furthermore, their first column has a zero as first entry and all other elements are
equal to

κ1

1 − κ1
. (2.28)

That is, the matrix forms as

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 κ1
1−κ1

· · · κ1
1−κ1

κ2
1−κ1

... P2

κn
1−κ1

⎤
⎥⎥⎥⎥⎥⎥⎦

, (2.29)

where the submatrix P2 is in detailed balance again. This is nothing but the
Metropolization for the smallest-weight state.

(b) The above construction can be iterated to finally obtain a matrix with the
following properties: (i) all the elements along the diagonal are zero, except possibly
the last one; (ii) its eigenvalues are 1 = λ1 > 0 > λ2 ≥ · · · ≥ λn and satisfy the
property that λi+1 attains the smallest possible value among all matrices (reversible
w.r.t. κ ) that already possess the eigenvalues 1, λ2, . . . , λi ; (iii) its columns have
constant entries under the diagonal, which are, respectively, −λ2, . . . ,−λn. (iv) its
eigenvectors are

e1 = 1 (2.30)

and
ek+1 = Πk − 〈Πk |1, 2, . . . , k − 1↑κ , k = 1, . . . , n − 1, (2.31)

where 1 = (1, . . . , 1)T , Πk = (0, . . . , 1, . . . , 0)T , and 〈 f |1, 2, . . . , k − 1↑κ is the
conditional expectation of f given the ρ -algebra generated by the sets 1, . . . , k − 1
under the probability κ ; in vector notation,

ek+1 =
⎛
⎜⎝0, . . . , 0︸ ︷︷ ︸

k−1terms

, 1 − κk

κk + · · · + κn
, − κk

κk + · · · + κn
, . . . , − κk

κk + · · · + κn

⎞
⎟⎠

T

.

(2.32)
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(c) Moreover, this matrix is the unique one which satisfies the previous condition (ii).

The resulting matrix, which we call the iterative Metropolized Gibbs sampler, is
described as

P IMG =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 y1 y1 · · · y1

w2
w1

y1 0 y2 · · · y2

w3
w1

y1
w3
w2

y2 0 · · · y3

...
...

...
. . .

...

wn
w1

y1
wn
w2

y2
wn
w3

y3 · · · 1 − y1 − y2 − · · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.33)

where y1 = κ1/(1 − κ1), y2 = (1 − y1)κ2/(1 − κ1 − κ2), . . .. We do not prove this
theorem here, but refer also some remarks.

Remark 2.2.1 A final nonzero element on the diagonal may remain in the matrix of
part (b). In fact this happens if and only if κn−1 ↔= κn.

Remark 2.2.2 It is not difficult to write down the values of λ2, . . . , λn. They are

λk+1 = −yk = − κk

κk+1 + · · · + κn

k−1∏
φ=1

(
1 − κφ

κφ+1 + · · · + κn

)
. (2.34)

If κk−1 = κk , then λk = λk+1. It is not surprising that Π1 − 〈Π1↑1 realizes the above
bound. In other words, this means that the most difficult quantity to estimate by
time averages is the probability of the least likely state. This seems consistent with
intuition.

In addition, we have a relation between the eigenvalues and the asymptotic
variance of integrand.

Corollary 2.2.1 Let P be a stochastic matrix, reversible w.r.t. κ . Let v(P, κ) be the
maximum asymptotic variance of (1/M)

∑M
i=1 f (xi ) for norm 1 functions f. Then

v(P, κ) ≥ 1 + λ2

1 − λ2
(2.35)

≥ 1 − 2κ1, (2.36)

and any matrix that realizes this equality must have the properties given in Theo-
rem 2.2.3(a) and hence be of the form (2.29).

This corollary says that the second largest eigenvalue is the lower bound of the
asymptotic variance in the worst case, and the function is proportional to the eigen-
vector (2.32) that belongs to the second largest eigenvalue.



2.2 Optimization of Transition Kernel 21

2.2.4 Four Optimization Problems

For an optimization problem, there are two interesting cases theoretically: the worst
case and the average case. Our problem of the asymptotic variance is the minimization
of the following two quantities; for the worst case

v(P, κ) = sup
〈 f ↑=0,〈 f 2↑=1

v( f, P, κ), (2.37)

and for the average case

v̄(P, κ) =
∫

〈 f ↑=0,〈 f 2↑=1
v( f, P, κ)d S( f ), (2.38)

where d S( f ) stands for the normalized surface area. We can consider these prob-
lem with/without the detailed balance. Set P = {P : κ P = κ} and R =
{P : Pis reversible w.r.t. κ}. There are following 4 optimization problems:

(i) Minimize v(P, κ) over all P ∈ R.
(ii) Minimize v(P, κ) over all P ∈ P .

(iii) Minimize v̄(P, κ) over all P ∈ R.
(iv) Minimize v̄(P, κ) over all P ∈ P .

The above theorem we mentioned is the solution of (i), the worst case of reversible
kernels.

2.2.5 Average Case Solution

Interestingly, Hwang these days has given the solution of (iv), the average case
of irreversible kernel [30]. He proved the following important lemma and showed
optimal solutions.

Theorem 2.2.4 (Hwang) The average asymptotic variance is expressed by the trace
of an inverse matrix:

v̄(P, κ) =
∫

〈 f ↑=0,〈 f 2↑=1
v( f, P, κ)d S( f ) (2.39)

= 2

n − 1
tr(1 − P)−1 − 1. (2.40)

Then the trace has a lower bound:

tr(1 − P)−1 =
∑

j

κ j Eκ (Tj ) ≥
n∑

i=1

(i − 1)κi , (2.41)
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where
Ti = inf{t ≥ 0 : xt = i}, (2.42)

is a stopping time and xt is a generated state at t-th Monte Carlo step.
Then, there are at most 2n−2 transition matrices reaching the minimum. For the

each transition matrix,

pi,i =
{

0 i < n
κn−κn−1

κn
i = n

(2.43)

and one of the following holds:

• p2,1 = 1 and p1,i = κ1/κi for some i .
• p1,2 = κ1/κ2 and p j,1 = 1 for some j .

According to this theorem, the specific transition matrix,

P OPA =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 κ1
κn

1 0 · · · 0 κ2−κ1
κn

0 1 · · · 0 κ3−κ2
κn

...
...

. . .
...

...

0 0 · · · 1 κn−κn−1
κn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.44)

is one of the optimal matrices that gives the minimized average asymptotic variance.
Note that the problems (ii) and (iii) are still open.

2.2.6 For Lattice Systems

When we can control the all matrix elements, the above theorems will be powerful.
For lattice models (Markov random fields), however, we have to deal with a exponen-
tially large number of states such that we need to update variables locally one by one.
In fact, this is the main philosophy of the MCMC. Then, the optimization problem of
the asymptotic variance becomes very difficult, and the above optimization schemes
for local variables may not be efficient for the whole transition matrix.

On lattice systems, Frigessi et al. proved an interesting theorem. Let D be a finite
lattice (say, D ⊂ Z

2), S0 be a finite set and S = (S0)
D . An element x of S will thus

be a |D|− tuple, x = (xρ )ρ∈D , xρ ∈ SO . We consider the measure κ on S given by
κ(x) = exp(−βU (x))/Zβ , where β is an inverse temperature and Zβ is a partition
function (normalizing constant). We, now, consider the random update where the site
to be updated is chosen uniformly at random. Their theorem is as follows.
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Theorem 2.2.5 (Frigessi, Hwang, Younes 2) (a) For any nonconstant f ,

v( f, P MG1 , κ) < v( f, P HB , κ), (2.45)

where P MG1 is the transition matrix which is constructed by Metropolizing for only
the minimum weight states in the local updates as the form (2.29), and P HB is that
by the heat bath algorithm. As a consequence, the second eigenvalue of P MG1 is
strictly smaller than the that of P HB.

(b) If β is large enough and the potential U has at least two local minimums, then
the second eigenvalue in absolute value of P MG1 is strictly smaller than that of P HB.

This theorem states that the iterative Metropolized Gibbs sampler is always better
than the heat bath algorithm in terms of asymptotic variance, and also weak conver-
gence at least low temperature.

2.2.7 Other Approaches

As applications of the Metropolized Gibbs sampler, Loison et al. [38] researched the
efficiency of the (single) Metropolized Gibbs sampler (they called it the restricted
direct heat bath algorithm) in some O(N ) models. Pollet et al. [49] applied the
iterative version to the Potts model and quantum XY model by using the worm
(directed-loop) algorithm, which will be explained in Sect. 3.4.3.

As other approaches, Mira tried to modify the transition matrix by directly mov-
ing the probabilities from the diagonal elements to off diagonal elements [42, 43].
Green et al. thought a multi trial after rejections [25]. Chiang et al. investigated the
asymptotic convergence rate in low-temperature limit [10]. Baldi et al. researched
the convergence issue of lattice systems (Markov random fields) [4], and Frigessi et
al. investigated the computational complexity of finite Markov random fields [22].
As a reinterpretation, Billera et al. showed a simple diagram of the Metropolis algo-
rithm [8]. Moreover, for enhancement of negative correlation, Frigessi et al. con-
sidered an antithetic coupling of two Gibbs sampler chains [20]. Although some
optimization approaches for the transition kernel have been proposed, they are based
on the Metropolis algorithm or the Gibbs sampler and they do not seem to improve
the efficiency drastically.

For the optimization of local transition matrix, it seems intuitively efficient to
minimize the diagonal elements (we call them the rejection rates). Actually, even for
a simple update case of finite number of candidates, the conventional methods fail
to minimize the diagonal elements. We will present a new method that constructs a
rejection-minimized transition matrix in the next section.

http://dx.doi.org/10.1007/978-4-431-54517-0_3
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2.3 Geometric Allocation

In this section, we introduce a novel method that constructs a transition kernel by a
geometric approach. This method can find solutions by applying a graphical proce-
dure, weight allocation, instead of solving the detailed balance equation algebraically
as before. Surprisingly, it is always possible to find a solution that minimizes the aver-
age rejection rate.

In the MCMC method, we update configuration (or state) variables locally and
run over the whole system. Now, let us consider updating one discrete variable as an
elementary process, e.g., flipping a single spin in the Ising or Potts models [63] as
Fig. 2.2. Given an environmental configuration, we would have n candidates (includ-
ing the current one) for the next configuration. The weight of each candidate config-
uration (or state) is given by wi (i = 1, . . . , n), to which the equilibrium probability
measure is proportional. Although the total and detailed balance are usually expressed
in terms of the weights {wi } and the transition probabilities {pi→ j } from state i to j , it
is more convenient to introduce a quantity vi j := wi pi→ j , which corresponds to the
amount of (raw) stochastic flow from state i to j . The law of probability conservation
and the total balance are then expressed as

wi =
n∑

j=1

vi j ∀ i (2.46)

w j =
n∑

i=1

vi j ∀ j, (2.47)

respectively. The average rejection rate is written as

∑
i

vii/
∑

i

wi . (2.48)

Also, it is straightforward to confirm that {vi j } satisfy

vi j = 1

n − 1
min[wi , w j ] i ↔= j (2.49)

for the Metropolis algorithm with the flat proposal distribution, and

Fig. 2.2 Single spin (Ele-
mentary) update in the ferro-
magnetic Ising model and the
weights of each configuration.
The parameter β is an inverse
temperature
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Metropolis heat bath

Fig. 2.3 Example of the weight allocation by the Metropolis and heat bath algorithms for n = 2.
The regions with thick frame denote the rejection rates

vi j = wi w j∑n
k=1 wk

∀ i, j (2.50)

for the heat bath algorithm (Gibbs sampler), where the detailed balance, i.e., the
absence of net stochastic flow, is manifested by the symmetry under the interchange
of the indices:

vi j = v ji ∀ i, j. (2.51)

Our aim is to find a set {vi j } that minimizes the average rejection rate while satisfying
Eqs. (2.46) and (2.47). The procedure for the task can be understood visually as weight
allocation, where we move (or allocate) some amount of weight (vi j ) from state i to
j keeping the entire shape of the weight boxes intact. For catching on this allocation
picture, let us think at first the case with n = 2 as in the single spin update of the Ising
model. Figure 2.3 shows the allocation when the Metropolis and heat bath algorithms
are applied, where the average rejection rate (∝ v11 + v22) clearly remains finite.
Indeed, for n = 2 the Metropolis algorithm gives the best solution, i.e., the minimum
average rejection rate even within the total balance (see Eq. (2.52)).

For n ≥ 3, these two methods fail to minimize the rejection rate as we will
mention. Besides, a generic method that accomplishes the minimization has not been
known before. We will show that we can easily make it possible by this geometric
picture. Although many optimal solutions are found actually, here we will introduce
two specific algorithms. One makes a reversible kernel, and the other makes an
irreversible kernel without the detailed balance.

2.3.1 Reversible Kernel

For describing our algorithm, let us introduce an operation named Swap:
Swap( i , j , w ) {

vii ← vii − w
vi j ← vi j + w
v ji ← v ji + w
v j j ← v j j − w

}.
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Metropolis heat bath Algorithm1 Algorithm2

Fig. 2.4 Example of weight allocation by the Metropolis, the heat bath, and the proposed two
algorithms for n = 4. Algorithm 1 constructs a reversible kernel, and Algorithm 2 does an irre-
versible kernel. Both proposed algorithms minimize the average rejection rate in general, and they
are rejection free in this case while the conventional methods remain finite rejection rates as indicated
by the thick frames

We note that if {vi j } satisfy the conditions (2.46), (2.47) and (2.51), this Swap
operation does not break them. A certain algorithm for the construction of reversible
kernel that minimizes the average rejection rate is described in Algorithm 1 [56].
This algorithm starts with the diagonal matrix [vi j ] and uses only Swap operation for
construction. Therefore the three conditions (2.46), (2.47) and (2.51) are automat-
ically satisfied in the whole procedure. This algorithm can be depicted visually as
Algorithm 1 in Fig. 2.4. As a result, the self-allocated weight that produces rejection
is expressed as

vii =
{

max(0, w1 − ∑n
i=2 wi ) i = 1

0 i ≥ 2.
(2.52)

That is, a rejection-free solution is obtained if the condition

w1 ≤ Sn

2
≡ 1

2

n∑
k=1

wk (2.53)
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is satisfied. When it is not satisfied, one has to necessarily assign the maximum
weight to itself since it is larger than the sum of the rest. Thus, the present solution
is optimal in the sense that it minimizes the average rejection rate.

2.3.2 Irreversible Kernel

Next, we show another algorithm that constructs an irreversible kernel [54]. Since
the invention by Metropolis and the coworkers, the reversibility, the detailed balance,
has been imposed to the Markov chain in most MCMC simulations. The reversibil-
ity is sufficient for the invariance of target distribution (sampling from the target
distribution asymptotically). It is, however, not necessary. If it is possible to find
a solution beyond the sufficient condition, further optimization can be achieved.
In the meanwhile, it has long been considered difficult to satisfy the total balance
without imposing the detailed balance. Thus attempts to optimizing transition prob-
abilities have concentrated within the reversibility as we mentioned in the previous
section [21, 34].

In fact, the reversibility is often broken secretly, even though the detailed balance
is used apparently to define the transition probabilities. The single spin update in a
classical system is such an example. The random update, where a spin to be flipped
is chosen uniformly randomly among all spins, satisfies the detailed balance strictly.

Algorithm 1 Construction of Reversible Kernel with Minimized Rejection

Sort n candidate configurations as w1 ≥ w2 ≥ w3 ≥ · · · ≥ wn (n ≥ 3).

vi j ← wi Πi j
wdiff ← w1 − w2
S3 ← ∑n

i=3 wi

if wdiff ≥ S3 then
for i = 2, ..., n do

Swap( 1, i , wi ) // vii becomes 0
end for

else
for i = 3, ..., n do

v ← wdiff ∗ wi /S3
Swap( 1, i , v )

end for // v11 = v22 ≥ v33 ≥ · · · ≥ vnn
for j = n, ..., 2 do

v′ ← v j j /( j − 1)

for k = j − 1, ..., 1 do
Swap( j , k, v′ )

end for // v11 = v22 ≥ · · · ≥ v j−1, j−1 and v j j = 0
end for

end if
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On the other hand, the reversibility is broken in the sequential update, where spins
are swept in a fixed order. The detailed balance is satisfied only locally, that is, only
in each spin flip, and the total balance is eventually fulfilled in one sweep [39].

In this subsection, we present another geometric algorithm that fulfills the total
balance but breaks the detailed balance even locally. Furthermore, breaking the
detailed balance introduces a net stochastic flow in the configuration space. It will
boost up the convergence further by suppressing random walk behavior [1, 13, 15].5

Our approach is the first method that can generally satisfy the total balance without
the detailed balance. Although a solution is not unique obviously, we propose the
following procedure as a concrete algorithm to find a solution for general n.

(i) Choose a configuration with maximum weight. If two or more configurations
have the same maximum weight, choose one of them. In the following, we
assume w1 is the maximum without loss of generality. The order of the remain-
ing weights does not matter.

(ii) Allocate the maximum weight w1 to the next box (i = 2). If the weight still
remains after saturating the box, reallocate the remainder to the next (i = 3).
Continue until the weight is all allocated.

(iii) Allocate the weight of the first landfilled box (w2) to the last partially filled box
in step (ii). Continue the allocation likewise.

(iv) Repeat step (iii) for w3, w4, . . . , wn . Once all the boxes with i ≥ 2 are saturated,
landfill the first box (i = 1) afterward.

The whole algorithm is described in Algorithm 2. In the algorithm, if two or
more configurations have the same maximum weight, choose one of them at first.
Any order of configurations accomplishes the same minimized rejection rate. In the
above procedure, all the boxes are filled without any space as well as the reversible
case, as in Fig. 2.4; it satisfies the two conditions (2.46) and (2.47). However, the
reversibility (2.51) is broken. (For example, v12 > 0, but v21 = 0 as depicted in the
figure.) Since w1 is the maximum, it is also clear that the second and subsequent
boxes must be already saturated when the allocation of its own weight is initiated.

By this procedure, {vi→ j } are determined as

vi→ j = max(0, min(Δi j , wi + w j − Δi j , wi , w j )), (2.54)

where

Δi j := Si − S j−1 + w1 1 ≤ i, j ≤ n (2.55)

Si :=
i∑

k=1

wk 1 ≤ i ≤ n (2.56)

S0 := Sn . (2.57)

5 The overrelaxation method [1] and the hybrid Monte Carlo [15] both satisfy the detailed balance,
mistakenly believed to break it.
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Algorithm 2 Construction of Irreversible Kernel with Minimized Rejection

Choose a configuration that has the maximum weight and number it 1.
Sort other configurations in an arbitrary order.
i ← 1
j ← 2
while i ≤ n do

wr ← wi
while wr > 0 do

if wr ≥ w j then
vi j ← w j
wr ← wr − w j
if j = n then

j ← 1
else

j ← j + 1
end if

else
vi j ← wr
w j ← w j − wr
wr ← 0

end if
end while
i ← i + 1

end while

It is easy to understand from Eq. (2.54) that the rejection flow is expressed as the
same Eq. (2.52) with Algorithm 1. In contrast to the reversible case, a net stochastic
flow is introduced as the result of breaking the detailed balance, and it is expected to
further boost up the sampling efficiency [13].

We close the introduction of our algorithm with a note about the ergodicity. Our
new algorithms both minimize the average rejection rate; they are methods of choice.
One hand, it is difficult to prove that the present irreversible kernel satisfies the
ergodicity in the sequential update since many of the transition probabilities become
zero. On the other hand, our reversible kernel can be ergodic almost as likely as
the heat bath algorithm because the transition probabilities to other states except
the current one are all positive. Since it is quite easy to prove the ergodicity of
Markov chain by the heat bath algorithm, this reversible version must be ergodic
in almost every cases. As we mentioned, the net stochastic flow in state space will
boost the convergence; the irreversible version will be better than the reversible one.
Thus, it is a good strategy to first check the ergodicity of the irreversible chain by
comparing to the reversible chain and then use the irreversible one basically. Another
way to ensure the ergodicity in the irreversible version is to randomly choose one
of the probability sets obtained by different allocation order. Although we have not
observed any glimpse of ergodicity breaking in the following simulations, such a
prescription will assure users of the ergodicity.
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2.4 Benchmarks in Potts Model

In order to assess the effectiveness of the present algorithms, we investigate the
convergence and the autocorrelations in the ferromagnetic q-state Potts models on
the square lattice [63]; the local (spin) state is expressed as ρk that takes an integer
(1 ≤ ρk ≤ q). These systems exhibit a continuous (q ≤ 4) or first-order (q > 4)
phase transition at T 4 = 1/ ln(1 + √

q). We calculate the square of order parameter
(structure factor) for q = 4 and 8 by several algorithms. The order parameter [64],
which is one of the most important quantity in statistical mechanical models, is
defined as

O = q − 1

q
‖ m ‖2

2, (2.58)

where

m = (m1, m2, . . . , mq) (2.59)

mi = 1

Ld(q − 1)

〈∑
k

(q Πi,ρk − 1)

〉
1 ≤ i ≤ q,

in the Potts model.
The order parameter equilibration (convergence) is shown in Fig. 2.5, where the

simulation starts with the fully ordered state and the local variables are sequentially
updated by the several algorithms. The square lattice with L = 32 and the critical tem-
perature T = 0.9102392266 are used. The Metropolis algorithm (2.11) [40], the heat
bath algorithm (2.12) [5], the Metropolized Gibbs sampler (2.24) [34, 35], the itera-

Fig. 2.5 Convergence of the
order parameter (square root
of the structure factor) in the
ferromagnetic 4-state Potts
model on the square lattice
with L = 32 at the critical
temperature. The horizontal
axis is the Monte Carlo step.
The simulation starts with
the ordered (all “up”) state.
Our rejection-minimized
samplers achieve the fastest
convergence. There is no
difference, in this scale, of
two data by the reversible and
irreversible kernel (That is
why only one data is plotted)
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Fig. 2.6 Autocorrelation time of the square of order parameter near the transition temperature
(T ↓ 0.910 and 0.745, respectively) in the 4-state (left) and 8-state (right) Potts models by several
methods. The system size is 16 × 16. In the both cases, the present methods realize the shortest
autocorrelation time. The error bars are the same order with the point sizes

tive Metropolized Gibbs sampler (2.33) [21], the optimal average sampler (2.44) [30],
our rejection-minimized algorithms, Algorithm 1 [56] and Algorithm 2 (2.54) [54],
are compared. Our samplers accomplish the fastest convergence of the quantity
(square root of the structure factor). The two reversible and irreversible kernel per-
form equally. This acceleration implies that locally rejection-minimized algorithms
reduce the second largest eigenvalue of the whole transition matrix in absolute value,
which real part is presumably positive expected from the overdamping form.

In Fig. 2.6, on the other hand, it is clearly seen that our algorithms significantly
reduce the autocorrelation time for q = 4, 8 in comparison with the conventional
methods. The autocorrelation time γint is estimated through the relation: ρ 2 ↓ (1 +
2γint)ρ

2
0 , where ρ 2

0 and ρ 2 are the variances of the estimator without considering
autocorrelation and with calculating correlation from the binned data using a bin
size much larger than the γint [32]. In the 4 (8)-state Potts model, the autocorrelation
time becomes nearly 6.4 (14) times as short as that by the Metropolis algorithm, 2.7
(2.6) times as short as the heat bath algorithm, and even 1.4 (1.8) times as short as
the iterative Metropolized Gibbs sampler [21, 49], which was considered as one of
the best solutions before our approach. The autocorrelations of our two algorithms
are much the same both for q = 4, 8.

Next, we investigated the dynamical exponent of the autocorrelation time at the
critical temperature. The system-size dependence of the autocorrelation for q = 4 is
shown in Fig. 2.7. All the update methods suffer from the critical slowing down with
the exponent z ∼ 2.3. Unfortunately, the locally optimized method does not reduce
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Fig. 2.7 System-size depen-
dence of the autocorrelation
time for q = 4 at the critical
temperature. The dynamics
of all update methods expe-
riences the critical slowing
down with the dynamical
exponent z ∼ 2.3. Although
the local optimization does
not improve the exponent,
the rejection-minimized sam-
plers get always factor over 6,
compared with the Metropolis
algorithm
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the exponent. The factor, however, over 6 is always gained against the Metropolis
algorithm.

As we have seen, our rejection-minimized samplers boost the convergence and
reduce the autocorrelation time of the relevant estimator (order parameter). The
present methods will be effective in not only the Potts model but also the many kinds
of systems. A further eigenvalue analysis is important. Particularly, modifications of
the above theorems for irreversible kernels are greatly of interest.

2.5 Bounce-Free Worm (Directed-Loop) Algorithm

Next, we will move onto the quantum Monte Carlo (QMC) method. Although we
will explain the detailed formalism of the QMC method with new modifications in
the next chapter, here let us see an example of the kernel optimization in the QMC
method.

The worm algorithm for quantum spin and lattice boson models is formulated
based on either the Euclidean path integral or the high-temperature series [50, 58].
One Monte Carlo sweep of the worm algorithm consists of the diagonal update,
where operators are inserted or removed without changing the shape of worldlines,
and the off-diagonal update, where the worldlines (and the type of operators) are
updated with keeping the position of operators unchanged. In the latter process,
a pair of creation and annihilation operators, which is called a worm, is inserted on a
worldline (pair creation), and one of them (called the head) is moved stochastically
until the head and the tail destroy each other (pair annihilation). As a thorny problem,
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(a) (b) (c) (d) (e)

Fig. 2.8 Extension of the worm-going pathway in the S = 1/2 model. Here, dashed (solid) vertical
lines denote spin up (down). The head of worm (open circle) moves on the worldline (a), and
scatters at the operator (horizontal thick line). As candidate configurations, we introduce operator-
flip updates (d), (e) in addition to the conventional ones (a)–(c). Note that in (e) the position of the
operator is shifted simultaneously in contrast to the simple bounce process (a)

a bounce process, where the head just backtracks and cancels the last update, has been
generally inevitable within the detailed balance. Here, as an example, we consider
the S = 1/2 antiferromagnetic XXZ model:

H =
∑

<i, j>

(
Sx

i Sx
j + Sy

i Sy
j + ΔSz

i Sz
j − C

)
− h

∑
i

Sz
i , (2.60)

where we introduce a parameter C controlling the ratio between the diagonal and
off-diagonal weights. In the head scattering process at an operator, only three among
four exits have a nonzero weight due to the conservation of the total Sz (Fig. 2.8a–c).
At the Heisenberg point (Δ = 1), there remain finite bounce probabilities except
at h = 0 within the detailed balance [2, 49, 58]. Unfortunately, the situation does
not improve much even in the total balance because the number of candidates is too
small. However, the condition (2.53) provides us a clear prospect; by increasing the
number of candidates, a bounce-free algorithm will be realized. According to this
strategy, we introduce an operator-flip update, where sites on which an operator acts
are shifted simultaneously (Fig. 2.8). By the operator flip together with the constant
C chosen as

C = max
(1

4
(2Δ + 3h − 1),

1

8
(Δ + 3h + 1)

)
, (2.61)

we can indeed eliminate the bounce process.
The autocorrelation data of the magnetization in the Heisenberg chain (Δ = 1)

are shown in Fig. 2.9. Amazingly, the bounce-free worm algorithm with the oper-
ator flip is faster by about 2 orders of magnitude than the Metropolis and the heat
bath algorithms. In this model, our irreversible kernel is nearly 3 times as fast as
our reversible kernel; the net stochastic flow effectively works in this case. Also
in high-S spin systems, the bounce-free worms can be constructed by having the
head hold the matrix element of the ladder operator or by representing the partition
function of general S system as that of decomposed S = 1/2 spin system [60]. Our
idea of breaking the detailed balance and operator-flip updates are also applied to
general bosonic models and the efficiency is improved because bosonic worms get
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Fig. 2.9 Magnetic field dependence of magnetization (upper) and autocorrelation time (lower) of
the S = 1/2 antiferromagnetic Heisenberg chain (L = 64, T = 1/2L). The maximum autocorre-
lation time is 1.0 × 103 by the worm update with Metropolis (circles), 9.8 × 102 by the worm with
heat bath (triangles), and 3.3 × 102 by the iterative Metropolized Gibbs sampler (diamonds). By
the bounce-free worm with the operator flip, γint is further reduced down to 23.8 (open squares) for
the reversible version and 8.1 (solid squares) for the irreversible version

bounce-minimized with more candidates. This application is very important also for
our calculation of spin-Peierls models in the following chapters.

2.6 General Construction of Irreversible Kernel

We will mention also new methods constructing improved kernel for general state
space that is not finite. Let us consider updating a continuous variable here. When
the inversion method is applicable, the variable is updated by the heat bath algorithm
(Gibbs sampler) usually. That is, the next state is determined from a uniformly random
variable r ∈ [0, 1] on conditional cumulative distribution. The calculation of the
inverse function is needed in this procedure. On the other hand, when the inversion
method cannot be applied, a candidate state is chosen from a proposal distribution
and accepted/rejected by the Metropolis algorithm usually. In this situation, where
we are in most cases, the inevitable rejection will be a bottleneck for sampling.
For continuous variables, it is not possible to apply directly the previous allocation
algorithm because the measure of each state is zero. We can, nevertheless, improve
the efficiency for both cases by extending the idea of breaking the detailed balance.
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2.6.1 Beyond Heat Bath Algorithm

First, we introduce an improved sampling that is an alternative method to the Gibbs
sampler. Let us review our allocation algorithm for the irreversible kernel for finite-
size problems. We start at the configuration with the maximum weight and allocate
the weight to the next. This procedure can be also represented by shifting each
position in the maximum weight on the cumulative distribution. We compare the
shifted distribution to the original (non-shifted) one as Fig. 2.10 and assign the next
position (state). It is possible to set the amount of shift any value. If there is a self-
allocation as a result of the shift, the amount is nothing but the rejection rate. It
is obvious that the amount of shift that can avoid the self-allocation is not unique;
the rejection-free kernel can be achieved as long as the amount of shift is such that
the maximum weight has no overlap with its original position as in the figure. For
continuous variables, we can set the start point of allocation (the amount of shift) at
our disposal. Let us consider the bivariate Gaussian distribution as a simple example:

P(x1, x2) ∝ e
− (x1−x2)2

2ρ2
1

− (x1+x2)2

2ρ2
2 . (2.62)

Given x2, x1 is updated by using the conditional cumulative distribution

F(x1|x2) =
∫ x1

−∞
P(x, x2)dx . (2.63)

The heat bath algorithm determines the next state as

x ′
1 = F−1(r), (2.64)

where r ∈ [0, 1] is an uniformly (pseudo) random variable. This process satisfies the
detailed balance.

The overrelaxation method has been known as one of the best ways to update
the Gaussian variables. The name “overrelaxation” comes from an idea to make the

Fig. 2.10 Picture of the
cumulative distribution shifts.
The algorithm for the irre-
versible kernel is correspond-
ing to the shift in the maximum
weight as shown in the midst.
If we shift in a larger value,
we could get a rejection free
algorithm as in the right bar
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Markov chain to have negative correlation. We have already seen that the negative
eigenvalues, which results in the negative correlation, make the asymptotic variance
smaller and the sampling more efficient. This method was first proposed by Adler [1]
for updating variables with a Gaussian conditional distribution. Whitmer [62] dis-
cussed slightly an extended application range of the method. In the overrelaxation
method, for generation of a variable from a conditional distribution

P(zi | · ) ∼ N (μi , ρ
2
i ), (2.65)

the next state is chosen as

z′
i = μi + α(zi − μi ) + ρi

√
1 − α2ν, (2.66)

where ν is a random variable generated from N (0, 1) and α is a parameter with
−1 < α < 1. Later, Brown et al. [9] and Creutz [12] applied the idea of generating
negative correlation to the SU(2) and SU(3) gauge theory, mapping the state space
into an Euclidean space where the distribution can be described by the Gaussian
distribution. Mira et al. rediscovered the overrelaxation method [44] in statistics.
Moreover, this overrelaxation technique can be used for not only the Gaussian but
some simple distributions, e.g., the conditional distribution of the classical XY model
or the Heisenberg model. The main idea is to try to go to the opposite side over the
center of the conditional distribution under the detailed balance. Thus, we need to
know where the center is. This condition hinders us from applying the method to
general cases. As an approach for general models, Neal [46] proposed the ordered
overrelaxation where some candidates are generated from the conditional distribution
and ordered, then we go to approximately opposite side through the order of states.
This method, however, still needs to generate configurations from the conditional
distribution. Thereby, the application range is not so extended practically.
Now, as an another update method [55], let us choose the next state as

x ′
1 = F−1({F(x1|x2) + c + wu}), (2.67)

where x1 is the current state, c and w is a positive real parameter with c ≥ w,
and u is an uniformly random variable in [−1, 1], respectively. The symbol {a} takes
the fractional portion of a real number a. If we use c = w = 1/2, this process is
nothing but the heat bath algorithm. On the other hand, when c ↔= 0, 1/2, it does
not satisfy the detailed balance and there is a net stochastic flow. This flow can push
the configuration globally as in Fig. 2.11. As the result, the autocorrelation time of
(x1 + x2)

2 is significantly reduced as shown in Fig. 2.12. In this figure, the overre-
laxation methods and the ordered overrelaxation method are also tested. Compared
with the conventional methods, the present update method can be better on the whole
parameter region; at any ratio ρ2/ρ1, there is a better parameter set of present scheme
than the best parameter of the overrelaxation or the ordered overrelaxation methods.
Figure 2.12 shows the results by using the heat bath algorithm, the overrelaxation
method with α = −0.86, the ordered overrelaxation with the number of candidates
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Fig. 2.11 Trajectories of configurations updated by the heat bath algorithm (left) and by the present
irreversible algorithm with c = 0.4 and w = 0.1 (right) in the bivariate Gaussian distribution with
ρ1 = 1 and ρ2 = 10. The ellipsoidal line is the three-sigma line of the Gaussian distribution. The
upper figures show the update procedures of each algorithm
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Fig. 2.12 Autocorrelation times of (x1+x2)
2 in the bivariate Gaussian distribution by using the heat

bath algorithm (triangles), the overrelaxation (circles) with α = −0.86, the ordered overrelaxation
(diamonds) with the number of candidates 10, and the present method with c = 0.4 and w = 0.05
(squares). The horizontal axis ρ2/ρ1 is corresponding to the sampling difficulty
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10, and the present algorithm with c = 0.4 and w = 0.05. The present method pro-
duces the shortest correlation time over ρ2/ρ1 ≥ 50 and achieves about 50 times as
short correlation time as the heat bath algorithm in the region. As we mentioned, we
can surely find a better parameter set of the present algorithm than the best parameter
of the conventional overrelaxation methods in the whole region.

2.6.2 Beyond Metropolis Algorithm

We will explain here it is possible to significantly reduce the rejection rate for general
cases. When the direct inversion method as in the previous subsection cannot be
applied, we resort to the Metropolis algorithm usually, where a candidate is generated
and the update trial is accept/reject according to the weight ratio. The Metropolis
algorithm is very simple and easy to implement. It has been a canonical algorithm for
the MCMC method since the invention in 1953 [40]. However, the inevitable rejection
often obstructs the efficient sampling. Obviously it is important to reduce the rejection
rate. When the number of candidates is two, the Metropolis algorithm achieves the
minimized rejection rate that is easily proved by the geometric picture we introduced
in Sect. 2.3. On the other hand, the Barker algorithm, which is nothing but the heat bath
algorithm for two candidates, has more rejection. Therefore, in order to reduce the
rejection rate, we have to prepare more candidates than two. As an alternative to the
simple Metropolis algorithm, some methods have been proposed so far. An example
is the multipoint Metropolis methods, where after generating some candidate states
the next configuration is stochastically chosen with the detailed balance kept. See
references Frenkel et al. [19], Liu et al. [37], Qin et al. [51], and Liu [36]. Another
example is the window algorithm proposed by Neal [45]. This is a variant of the
multipoint Metropolis methods for the hybrid Monte Carlo method [15].

We can apply our rejection-minimized algorithms after creating some candidate
states. Let us consider sampling from the wine-bottle (Mexican-hat) potential:

P(x1, x2)∝exp

(
−
(

(x1 − x2)2

2ρ 2
1

+ (x1 + x2)2

2ρ 2
2

)(
(x1 − x2)2

2ρ 2
1

+ (x1 + x2)2

2ρ 2
2

− h

)
+ h2

4

)
.

(2.68)

The example of the potential is shown in Fig. 2.13. We propose a candidate config-
uration by the isotropic bivariate Gaussian distribution ∝ exp(−(Δx1)

2 − (Δx2)
2).

Here, we try to make some proposals. If we propose candidates from the current posi-
tion and naively make a transition matrix (probability) taking into account only the
weights, the total balance is broken. It is because we have to consider also the different
proposal probability. Avoiding this difficult task, we use the following strategy:

1. A configuration is chosen as a hub from the current configuration by a proposal
distribution.
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Fig. 2.13 Wine-bottle (Mexican-hat) potential for ρ1 = 1, ρ2 = 2, h = 16

2. Candidates are generated by using the same proposal distribution with process 1
from the hub.

3. The next state is chosen among the candidates and the current configuration by
using the transition probabilities taking into account only the weights of the states.

This procedure is depicted as in Fig. 2.14. In the process 3, we can make the rejec-
tion rate minimized by applying our algorithms we introduced. Figure 2.15 shows
that the rejection rate is indeed reduced by using this multi-proposal algorithm and
the irreversible kernel. The correlation time of (x1 + x2)

2 also gets shorter as the
number of candidates is increased. Although this example is a simple case, this pro-
cedure is applicable to any MCMC sampling. The further investigation of the validity
is a future problem. These days, the role of the net stochastic flow (irreversible drift)
has caught much attention [18, 29, 31]. The performance of our algorithm and the
efficient flow structure need to be investigated further in the future.

Finally, we close this chapter with noting of the CPU time cost. As we mentioned
in the introduction of the geometric allocation algorithms, there is no extra CPU
time cost when we can prepare all transition probabilities before sampling. As for
the continuous variables, it is not the case; we have to calculate probabilities at each

Fig. 2.14 Multi-proposal
strategy for n = 4. At first, a
center position is chosen from
the current position x . Then,
candidates x ′, x ′′, x ′′′ are
generated from the center. The
dot line shows the 1 sigma line
of the Gaussian distribution
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Fig. 2.15 Rejection rates (left) and the correlation times of (x1 + x2)
2 (right) by the simple

Metropolis algorithm and the rejection-minimized method for n = 3 and n = 4. The rejection rate
is definitely reduced as the number of candidates is increased. Accompanying the rejection rate, the
correlation time gets shorter

transition. Although the rejection rate is certainly reduced by using the multi proposal
strategy, meanwhile, the CPU time cost is increased. Thus, the question arises that
the needed calculation time is truly decreased. Here, we mention a combination with
parallelization method. The process of preparing candidates can be done indepen-
dently. Thus, we can control the CPU time by applying the parallelization for the
multi proposal. This multi-core update scheme is effective especially for the cases
where the long thermalization (convergence) time is needed by a simple single core
update. The effectiveness of this combination method needs to be researched.
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Chapter 3
Monte Carlo Method for Spin-Peierls Systems

3.1 Developments of Quantum Monte Carlo

The quantum Monte Carlo (QMC) method that is based on the worldline
representation have been applied to a wide variety of quantum spin and bosonic
systems and established its value as a powerful numerical tool for investigating
quantum critical phenomena [15]. Particularly in strongly correlated systems that
it is essential to simulate on a large scale, the method has made a significant con-
tribution to elucidate a lot of nontrivial quantum natures with unbiased results [3,
17]. The basic idea of the QMC method was devised by Handscomb [11] as early as
1962. A series expansion of the density-matrix operator exp(−κH) and importance
sampling of the operator sequence was introduced. The application range, however,
is restricted to a few models, such as the S = 1/2 ferromagnetic Heisenberg model.
Another representation using the Trotter formula was invented by Suzuki [29], where
a quantum system is mapped onto a classical system by the Feynman path integral
with discretized imaginary time. The mapped state is called the worldline configura-
tion and sampled by means of the Monte Carlo method. Although we can get correct
results by extrapolating the discretization step of imaginary time to zero, it had been
an artificial bottleneck that the convergence and sampling efficiency fatally dropped
down as the discretization step is decreased.

One of the recent progresses of the QMC method was the elimination of the
decomposition error. Beard et al. [1] showed that it is possible to simulate quantum
systems directly in continuous time. Shortly later, the stochastic series expansion
(SSE), which expresses the partition function as the high-temperature series, was
proposed by Sandvik [25] as an another exact representation. In the meantime, the
worldline update had consisted of local updates that had many drawbacks, e.g., the
poor acceptance rate and the inability to change the winding number.

Another significant progress of the QMC method was the development of effi-
cient nonlocal update methods, such as the loop algorithm [7] and the worm algo-
rithm [22]. The loop algorithm, which is a quantum version of the Swendsen-Wang
algorithm [30], performs a cluster update on the worldlines and reduces significantly
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the dynamical exponent at critical temperature in some quantum spin systems, e.g.,
the Heisenberg model on bipartite lattices [6]. On the other hand, the worm algorithm
proposed by Prokof’ev et al. [22] is more generally applicable than the loop algorithm,
where a pair of the creation and annihilation operators, called the worm, is inserted
and moved stochastically on the worldlines. These days, the directed-loop algorithm
proposed by Syljuasen et al. [32], which is a variant of the worm algorithm, has
become a standard method for quantum spin and bosonic systems.

In the meanwhile, the QMC method suffers from the negative sign problem for
frustrated quantum spin models or fermionic models except half filling. For the
one-dimensional spinless fermionic systems, in fact, the meron algorithm [3, 4]
can greatly overcome the problem. The fermionic degree of freedom being traced
out, the worldline configuration is the pure loop in the method. Then, the pure-loop
configuration that has at least one “meron” that inverts the sign by flipping is ruled
out for statistical averages. For spin systems, however, there has been no example
where the meron algorithm works well except for the trivial cases so far. We will
mention the first application of the algorithm to a quantum spin model with the
twisted boundary condition in Sect. 4.4.

3.2 Difficulty of Conventional Methods

Although the QMC methods have performed well for many quantum systems, the
conventional update methods cannot satisfy the ergodicity (irreducibility) for particle
number nonconserving systems. When it is not trivial to find a good quantum number
and basis set, it is inevitable to treat such nonconserved particles; the quantum number
necessarily varies along the imaginary time axis. One of the relevant models is the
frustrated transverse Ising model [13, 31] where the total Sz is not conserved in the
Hamiltonian (Note that a cluster update can be performed only on bipartite lattices
without frustration [24]). Another example is a spin-Peierls model:

H =
∑

r

J (1+ γqr )Sr+1 · Sr + p2
r

2m
+ c

2
q2

r

=
∑

r

J

(
1+

√
λ Π

2
(ar + a†

r )

)
Sr+1 · Sr +

∑
r

λ

(
a†

r ar + 1

2

)
, (3.1)

where qr and pr are the coordinate and momentum operators at site r , m and c are
the mass and the spring constant of the lattice degree of freedom, a†

r and ar are the
creation and annihilation operators of boson (phonon), J > 0 (antiferromagnetic spin
interaction), γ is the spin-lattice coupling parameter, λ = ∈c/m is the excitation
gap of dispersionless (Einstein) phonon, and Π = γ2/c is the spin-phonon coupling
parameter, respectively. Here the lattice degree of freedom is transformed to a boson
(phonon) by the second quantization:
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qr =
√

1

2mλ
(a†

r + ar ) (3.2)

pr = i

√
mλ

2
(a†

r − ar ). (3.3)

Let us consider the one-dimensional S = 1/2 spin-Peierls model here, and we
will extend this model to a dispersive case in two-dimensional systems in Chap. 6.
The optical phonon is adequate for describing the physical property of CuGeO3 as
discussed in the references [10, 34].

In this Hamiltonian, the boson number is not conserved owing to the spin-phonon
interaction. The spin-Peierls system exhibits the spin-Peierls transition that has been
observed in experiments for organic and inorganic materials, e.g., TTF-CuBDT [2],
CuGeO3 [12, 33] and TiOCl [28], and has been investigated theoretically [5, 9] and
numerically [20, 27] during several decades. Particularly, a quantum phase transition
between a gapless spin-liquid phase and a quantum dimer (spin-Peierls) phase in the
one-dimensional system has attracted much attention and been reported in many
papers [27]. However, the phase diagram and the universality class are still unclear,
as we mentioned in Chap. 1. It is far from trivial to analyze the spin-Peierls system
analytically due to the existence of multiple (spin and phonon) degrees of freedom
and the infinite dimension of the Hilbert space. Thus, we have to resort to numerical
calculations. Accurate calculations are, however, still difficult to be reached by the
exact diagonalization method and the density matrix renormalization group method
due to the needed large Hilbert space.

The Monte Carlo method can treat such large systems, but there are many dif-
ficulties of applying the conventional QMC method [16, 18, 19, 21, 23, 27] as
follows:

1. Fine-mesh slowing down.
2. Ergodicity satisfaction.
3. Necessity of the occupation number cutoff.
4. Rejection (bounce) from treating many candidate states.
5. Calculation of non-trivial correlation functions and energy gaps.
6. Appearance of the long-range interactions.

Our new method presented below completely overcomes all of these problems.

1. When we use a real coordinate basis for the lattice degree of freedom, which is
called the path-integral Monte Carlo, the fine mesh of the imaginary time brings
about the slowing down as we mentioned in the last section. In order to avoid the
discretization error and slowing down, we transform the lattice degree of freedom
into the boson (phonon) by the second quantization and represent the system on
the continuous time as introduced in Sect. 3.3.1.

2. The transformed Hamiltonian, however, does not conserve the total number of
bosons. Thus, the conventional worm update cannot satisfy the ergodicity (irre-
ducibility) because the generated configurations keep the occupation number con-
stant in the imaginary time direction. Then, we extend the worm (directed-loop)

http://dx.doi.org/10.1007/978-4-431-54517-0_6
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update for satisfying the ergodicity by developing an update called warp update
and using a variant of the worm named bug in Sect. 3.4.3.

3. In the meantime, the SSE, which uses the high-temperature series, is known
as one of the exact representation of quantum systems as we mentioned. For
systems with soft-core bosons like the present spin-Peierls model, however, it is
necessary to impose an occupation number cutoff for the soft-core bosons in the
high-temperature series representation, which introduces an artificial systematic
error. Thus, we purposely select not the high-temperature series but the continuous
imaginary-time representation in order to avoid the cutoff and reduce significantly
the CPU time, as we will explain in detail in the Sect. 3.3.2.

4. When we conduct the worm scattering at operators, there are many next candidate
states. Here, the update procedure of the worm algorithm has an analogy with
the single spin update of the Potts model thoroughly discussed in the last chapter.
Thus the optimization of transition probabilities is very important for efficient cal-
culation. In fact, the rejection that we call the bounce has been a serious bottleneck
generally in the worm algorithm. We have succeeded in perfectly eliminating the
bounce process in the worm scattering, applying the novel optimization approach
that we introduced in Sect. 2.3.

5. Moreover, we will explain the detailed calculation of non-trivial correlation func-
tions and energy gaps, which are fully utilized in the level spectroscopy. Par-
ticularly for investigating the critical phenomena, it is also critical to precisely
calculate correlation functions. It is not trivial, however, to calculate off-diagonal
(Green’s) correlations, e.g. ⊂S−(ρ )S+→ and ⊂a(ρ )a†→; the local update of world-
line configurations, such as, the insertion of pair off-diagonal operators, cannot
catch the above non-trivial correlations. The worm algorithm, on the other hand,
constructs extended configurations where the off-diagonal correlations directly
appear. Then, we can acquire such quantities by an ingenious reweighting proce-
dure as explained in Sect. 3.4.4.

6. The transformed spin-phonon model includes long-range interactions when the
phonon has a dispersion. Treating these correctly can be a drawback in practical
simulations, consuming the CPU time. We then apply an efficient algorithm called
Walker’s method of alias and succeed in reducing the CPU time cost significantly
as first developed and demonstrated by Fukui et al. [8]. Moreover, we have to take
an infinite number of weights into consideration owing the the dispersive phonon.
We will also introduce a guiding weight for efficient treatment of various matrix
elements that come from the long-range interactions.

3.3 Representation of Quantum Systems

3.3.1 Continuous Time Representation

The spin-Peierls system has been numerically investigated by the path-integral Monte
Carlo method [20], where the real-space basis is used for the lattice degree of

http://dx.doi.org/10.1007/978-4-431-54517-0_2
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freedom and the imaginary time is decomposed. The applicable models of the method,
however, have been restricted to small (one-dimensional) systems. It is because the
relaxation (convergence) of the Markov chain becomes fatally slow when the dis-
cretization step is decreased. Recently, it has been possible to eliminate the discretiza-
tion error by taking advantage of the discrete feature of the second quantization for
the lattice degree of freedom [27]. As a modern representation without the decom-
position error, let us describe the partition function in continuous time at first and
see the relation with the high-temperature series later.

In the continuous-time representation, we decompose the Hamiltonian into two
parts:

H = H0 + V . (3.4)

We assume the part H0 to be a diagonal operator according to a chosen basis set. The
partition function of a canonical ensemble at inverse temperature κ is expanded as

Z = tre−κH = tr

[
Tρ exp

(
−
∫ κ

0
dρ V (ρ )

)
e−κH0

]

= tr

[(
1−

∫ κ

0
dρ1V (ρ1)+

∫ κ

0
dρ1

∫ κ

ρ1

dρ2V (ρ1)V (ρ2)+ · · ·

+ (−1)n
∫ κ

0
dρ1

∫ κ

ρ1

dρ2 · · ·
∫ κ

ρn−1

dρn

n⎡
i=1

V (ρi )+ · · ·
⎢

e−κH0

⎣
. (3.5)

Here Tρ is the time-ordering operator and V (ρ ) = e−ρ H0 V eρ H0 as accustomed in
the interaction representation. Inserting complete basis sets between V ’s, we rewrite
the partition function as

Z =
∑
γ1

⊂γ1|e−κE1 |γ1→ +
√∑

n=1

∑
(γ1,...,γn)

∑
(φ1,...,φn)

∫ κ

0
dρ1

∫ κ

ρ1

dρ2 · · ·
∫ κ

ρn−1

dρn

e−ρ1 E1⊂γ1| − Vφ1 |γ2→e−(ρ2−ρ1)E2 · · · ⊂γn| − Vφn |γ1→e−(κ−ρn)E1, (3.6)

where Ei = ⊂γi |H0|γi →, and Vφ is one of local operators of which the term V consists.
If all the matrix elements ⊂γp| − Vφp |γp+1→ are positive definite, we can designate a
weight for each worldline configuration as

wct = e−κE1

n⎡
p=1

⊂γp| − Vφp |γp+1→e−ρp(E p−E p+1)dρp, (3.7)

where γn+1 = γ1 from the periodicity of the imaginary-time axis. If some diagonal
elements of the local operator ⊂γp| − Vφp |γp+1→ have negative values, we need
to subtract a constant from the operator in order to avoid the negative signs. On
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the other hand, if there exist off-diagonal elements with negative value, the QMC
method may suffer from the notorious negative-sign problem. We will rewrite the
spin-Peierls Hamiltonian (3.1) later so that any negative sign does not appear. Since
this formulation is free from the decomposition error of imaginary time, we do not
need to extrapolate the discretization step and physical quantities can be exactly
calculated within a statistical error alone.

As we mentioned, the high-temperature series is another useful representation of
the QMC method. If we set H0 = 0 and integrate all ρi in Eq. (3.5), one gets the
representation of the high-temperature series; the partition function is expressed as

Z =
√∑

n=0

κn

n! tr(−H)n

=
√∑

n=0

∑
(γ1,...,γn)

∑
(l1,...,ln)

κ

n!
n⎡

p=1

⊂γp| − Hφp |γp+1→, (3.8)

and the weight as

whs = κ

n!
n⎡

p=1

⊂γp| − Hφp |γp+1→. (3.9)

This expression is used in the SSE method.
Let us see the case of our spin-Peierls model (3.1) in more detail. First, we subtract

a constant C from the spin operator in the model in order to eliminate the negative
sign as we will mention in Sect. 3.4 and decompose the Hamiltonian into two parts

H = H sp + Hp + const, (3.10)

where

H sp =
∑

r

J

(
1+

√
λ Π

2
(a†

r + ar )(Sr+1 · Sr − C)

)
(3.11)

Hp = λ
∑

r

(
a†

r + C J

√
Π

2λ

)(
ar + C J

√
Π

2λ

)
, (3.12)

and C is necessary to be greater than or equal to 1/4 for S = 1/2 as shown later. We
shift the boson operator:

a†
r → a†

r − C J

√
Π

2λ
(3.13)

ar → ar − C J

√
Π

2λ
. (3.14)
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Then the Hamiltonian and parameters are redefined as

H = H sp + Hp (3.15)

H sp =
∑

r

J

(
1+

√
λ Π

2

(
a†

r + ar − C J

√
2Π

λ

)
(Sr+1 · Sr − C)

)

=
∑

r

J

(
1− C JΠ+

√
λ Π

2
(a†

r + ar )(Sr+1 · Sr − C)

)
(3.16)

=
∑

r

J̃

(
1+

⎤
λ Π̃

2
(a†

r + ar )(Sr+1 · Sr − C)

)

Hp = λ
∑

r

a†
r ar , (3.17)

where

J̃ = J (1− C JΠ) (3.18)

Π̃ = Π

(1− C JΠ)2 . (3.19)

Note that the spin-phonon coupling parameter Π must be smaller than 1/C J so that
negative signs do not appear. This parameter region is notwithstanding enough broad
to investigate the relevant quantum phase transition in the spin-Peierls system.

3.3.2 Comparison to High-Temperature Series

Although there are two modern representations in the QMC method (the continuous-
time path integral and the high-temperature series) as we saw, we adopt the
continuous-time representation for the spin-Peierls model. One of the reasons is
that it is inevitable to impose a cutoff of boson (phonon) occupation number in the
SSE method in the high-temperature representation. Our original model (3.1) has
the negative diagonal elements for the lattice term (⊂γ| − λ

⎥
r a†

r ar |γ→ = −λnb,
where nb is the total number of bosons) when we use the occupation-number basis
in the high-temperature series (3.8). Thus we have to subtract a constant D from the
operator (a†

r ar → a†
r ar − D) in order to avoid the negative sign. If we restrict the

Hilbert space of boson such that the occupation number has to be below the constant
D, this cutoff introduces a systematic error. Then, we need to set the cutoff D to
a larger value to some extent than the expectation value. The larger the cutoff is,
however, the heavier the CPU-time cost becomes. Let us consider how energy is
measured in the high-temperature series in order to figure out this reason. On one
hand, the energy average of a canonical ensemble is expressed as
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⊂E→ = −β ln Z

βκ
. (3.20)

On the other hand, from Eq. (3.8) the derivative is described in the high-temperature
series as

− β ln Z

βκ
= − 1

Z

√∑
n=0

n
κn−1

n! tr(−H)n = −⊂n→
κ

, (3.21)

where ⊂n→ is the thermal average of the number of operators. Therefore, the energy
is measured by the number of operators on the worldlines:

⊂E→ = −⊂n→
κ

. (3.22)

In the meanwhile, the CPU-time cost for one Monte Carlo step is proportional to ⊂n→
(note that the cost is proportional to Δ > n in using the fixed-length SSE method
with length Δ [25]) for sweeping the whole worldlines. If we set the cutoff to a
significantly larger value than the occupation number of boson in simulations so that
the systematic error can be ignored, the energy density for the lattice term is about
λD. Since the energy density for the spin term is J (we assume the spin interaction
changes slightly by the spin-phonon coupling), the CPU time linearly increases in
proportion as Nκ(J + λD), where N is the number of sites.

On the other hand, we can eliminate the cutoff without additional CPU-time
cost by using the continuous-time representation. Here, let us set H0 = Hp and
V = H sp in the Hamiltonian (3.4). Since we include the lattice term into H0, there
is no problematic diagonal element in V = H sp term. Therefore, the CPU-time cost
in this representation increases to Nκ J . As an example, if we set the parameters
J = 1, λ = 1/4 and the cutoff D = 40, the CPU time of the SSE method using the
high-temperature series becomes about 10 times longer than that of the continuous-
time representation (note that if we set λ smaller, the average occupation number
getting larger, and we need to set also the cutoff D larger). This argument about
CPU-time cost from a truncation is generally valid for simulations of not only our
spin-Peierls model but also any soft-core bosonic model including potential terms,
such as the bose Hubbard model.

To sum up, the continuous-time representation is the much better choice than
the SSE method for soft-core bosonic models since we can include the problematic
diagonal operators into H0. For the application to the spin-Peierls systems that include
the phonon degree of freedom as a soft-core boson, we adopt the continuous-time
representation because of the above rational reason.
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3.4 Update Procedure

3.4.1 Worldline Configuration

In this subsection, we will see an example of worldline configurations. First, let us
focus our attention on the spin operators in the (isotropic) spin-Peierls model (3.15):

− H s = −
∑

r

J̃ (Sr+1 · Sr − C)

= −
∑

r

J̃

⎦
1

2
(S+r+1S−r + S−r+1S+r )+ Sz

r+1Sz
r − C

⎛

≡ −
∑

r

H s
r+1,r . (3.23)

We adopt the eigenstate of the local Sz as the basis. Then the matrix H s
r+1,r for

S = 1/2 is expressed as

− H s
r+1,r = J̃

⎜
⎝⎝⎝⎝⎝⎝

− 1
4 + C 0 0 0

0 1
4 + C − 1

2 0

0 − 1
2

1
4 + C 0

0 0 0 − 1
4 + C




| ↑↑→
| ↑↓→
| ↓↑→
| ↓↓→

. (3.24)

Although the off-diagonal elements seem to give rise to negative signs, the sign of
S+r+1S−r + S−r+1S+r does not matter to the physics on bipartite lattices; this inversion
corresponds to the gauge rotation around z-axis in the spin state space. Then, we
are allowed to invert the sign on the off-diagonal elements from − 1

2 to 1
2 . The

constant C must be greater than or equal to 1/4 for S = 1/2 (S2 for general S) spin
in order to eliminate the negative signs on the diagonal elements. The constant is
often chosen as 1/4 because the matrix elements become binary (0 or 1/2), which
makes a program simple in practice. A typical worldline configuration of spins for
4-site chain is described in Fig. 3.1. The depicted configuration is corresponding
to a state in the representation (3.6) for Vφ = H s

φ+1,φ such that n = 6, {ρ 6
i=1},

(φ1, φ2, φ3, φ4, φ5, φ6) = (0, 2, 1, 2, 0, 2), and

|γ1→ = | ↑↓↓↑→ (3.25)

|γ2→ = |γ3→ = |γ4→ = | ↓↑↓↑→ (3.26)

|γ5→ = | ↓↑↑↓→ (3.27)

|γ6→ = | ↑↓↑↓→. (3.28)
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Fig. 3.1 Example of the
worldline configuration of
4-site spin chain. The sym-
bols Sz

1 Sz
2 and Sz

2 Sz
3 represent

the operators − J̃ (Sz
1 Sz

2 − C)

and − J̃ (Sz
2 Sz

3 − C), respec-
tively. The bold lines that are
never cut on the worldlines
expresses the sequence of
up spin configuration, which
means that the Hamiltonian
conserves the total Sz

Note that a local operator Vφp and a state |γp→ are not independent of each other.
Let us consider how we update this worldline configuration. As an example of

failure, a local flip that changes only |γ1→ from | ↑↓↓↑→ to | ↓↓↓↑→ is not allowed
because the Hamiltonian conserves the total Sz . Even if a model does not conserve
a particle number, naive local updates like above is fatally inefficient in general. In
the following sections, we will explain an efficient update method for continuous-
time worldline configurations. The update procedure consists of two main update
processes: the diagonal update and the off-diagonal update.

3.4.2 Diagonal Update

We need to update the number of operators and the shape of worldlines in the QMC
method. In the diagonal update, the number of operators is updated, where diagonal
operators in V term of the Hamiltonian (3.4) are inserted or removed. Let us start from
the worldline configuration shown in Fig. 3.1 and see an example of operator removal.
If we try to remove the off-diagonal operator S−0 S+1 (ρ1), the trial could be accepted
with a certain probability if we change the operator S+0 S−1 (ρ5) to Sz

0 Sz
1(ρ5) and related

intermediate states {γ5
p=2} simultaneously in the case where C > 1/4. In general,

however, it is quite difficult and not allowed in most cases to insert/remove an off-
diagonal operator. As for diagonal operators, on the other hand, we can insert/remove
them independently of other configurations. If the operator Sz

2 Sz
3(ρ2) in the figure

is removed, the worldline configuration changes to a state such that n = 5, {ρ 5
i=1},

(φ1, φ2, φ3, φ4, φ5) = (0, 1, 2, 0, 2), and

|γ1→ = | ↑↓↓↑→ (3.29)

|γ2→ = |γ3→ = | ↓↑↓↑→ (3.30)

|γ4→ = | ↓↑↑↓→ (3.31)

|γ5→ = | ↑↓↑↓→, (3.32)
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in the representation (3.6). Therefore, we try to insert/remove only diagonal operators
for updating the number of operators.

Next, let us consider an appropriate probability of this update. As we mentioned,
trials to insert/remove a diagonal operator are independent of each other at every
imaginary time; namely, this is a Poisson process. Let us update the number of
diagonal operators with the matrix element (intensity) v. Now assume that there
are n1 operators in time interval ρ and they are indexed as ρ1, ..., ρn1 . A weight
contribution is described as

w({ρ1, ..., ρn1}) = (vdρ)n1 (3.33)

from Eq. 3.7 (v = ⊂γp| − Vφp |γp+1→). We consider using an intensity v′ (guiding
weight) that may be different from the true value v because it is convenient to use
an uniform intensity even if a true matrix element varies depending on imaginary
time. Here, we consider removing some operators at first and inserting operators
subsequently. A probability that the number of operators is changed from n1 to k
by removal is expressed by the probability density function (PDF) of a binomial
distribution:

f (k ; n, 1− pout) =
(

n
k

)
(1− pout)

k pn−k
out , (3.34)

where

pout = min

(
1,

v′

v

)
. (3.35)

Note that if v = 0, no operator exists, and no removal is tried. As for insertion, a
probability that n2 − k + k′ trial events occur with the intensity v′ in time interval ρ

is described by the PDF of a Poisson distribution:

Pois(n2 − k + k′; v′ρ) = e−v′ρ (v′ρ)n2−k+k′

(n2 − k + k′)! . (3.36)

Then, the trial is accepted by probability

pin = min
⎞

1,
v

v′
⎟
. (3.37)

The probability that n2 − k insertions success among n2 − k + k′ trials and n2 − k
points with width dρ are chosen is written as
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f (k′; n2 − k + k′, 1− pin)

(
dρ

ρ

)n2−k

=
(

n2 − k + k′
k′

)
(1− pin)

k pn−k
in

(
dρ

ρ

)n2−k

. (3.38)

Then we define a probability that the number of diagonal operators is updated from
n1 to n2 through k and n2 + k′ as

p(n1 → k → n2 + k′ → n2)

= f (k; n1, 1− pout)Pois(n2 − k + k′; v′ρ)

f (k′; n2 − k + k′, 1− pin)

(
dρ

ρ

)n2−k

n2!, (3.39)

where the final factorial (n2!) is the number of events that times are indexed as
{ρ1, ..., ρn2}. Finally, the detailed balance condition,

w({ρ1, ..., ρn1})p(n1 → k → n2 + k′ → n2)

= w({ρ1, ..., ρn2})p(n2 → k → n1 + k′ → n1), (3.40)

where 0 ∞ k ∞ min(n1, n2), 0 ∞ k′, v′ > 0, is satisfied from the above equations.
It is the important point that using any value v′ > 0 is allowed for this diagonal
update. We show an example of this balance in the simplest case where v′ = v. In
this case, other values become simple as pout = pin = 1, k = k′ = 0 and Eq. (3.40)
is simplified as

(vdρ)n1
e−vρ (vρ)n2

n2!
(

dρ

ρ

)n2

n2!

= (vdρ)n2
e−vρ (vρ)n1

n1!
(

dρ

ρ

)n1

n1!. (3.41)

We have considered a time interval ρ and a diagonal matrix element v. In the
diagonal operator, all we need to do is to insert/remove diagonal operators on every
worldline segments with respective time interval and intensity. Instead of conduct-
ing the above update procedure on each segment, we adopt an exactly equivalent
stochastic process that is easier to be implemented as following:

• Set a guiding rate (weight) v′i to each local operator.
• Start from ρ = 0.
• Repeat

1. Generate ρproceed from the exponential distribution of rate v′tot =
⎥

i v′i ; ρprocced ∀
v′tot exp(−v′totρ).

2. Set ρnext = ρ + ρproceed.
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3. If a diagonal operator with a matrix element vi (ρi ) exists at ρi such that ρ < ρi <

ρnext, remove it with probability pout = min(1, v′i/vi (ρi )).
4. Set ρ = ρnext.
5. If ρ < κ, choose a local operator with probability v′i/v′tot , and insert it at ρ with

prob. pin = min(1, vi/v′i ).

• Stop if ρ ↔ κ.
• Leave all off-diagonal operators on the worldlines untouched.

Since the exponential distribution is characterized by the memoryless property

Pr(ρ > s + t |ρ > s) = Pr(ρ > t) ≤s, t ↔ 0, (3.42)

we end up trying to insert/remove diagonal operators at every imaginary time inde-
pendently by the above procedure.

In the case of the isotropic spin-Peierls model (3.15), we set C = 1/4 and
v′i = 1/2. The diagonal update is simplified by this choice, where we insert a
local spin diagonal operator only if relevant spins are antiparallel and remove all
pre-existing diagonal operators certainly.

In spite of this one-way sweep from 0 to κ, the above update procedure ensures
the detailed balance because of the independence. We note that a similar one-way
sweep on the operator string in the SSE method indeed breaks the detailed balance
because each trial of operator insertion/removal is not independent of each other (but
dependent on the total number of operators as expressed in Eq. (3.9). Nevertheless,
it satisfies the total balance in the whole one-way sweep since this is nothing but the
sequential single spin update by fixed order.

Our formulation and method in this diagonal update is valid to any Poisson
process in general. Although our time evolution is on imaginary-time axis, the
mathematical formulation is the just same with the time evolution that follows any
master equation. Thus our procedure is directly applicable to many kinds of equilib-
rium/nonequilibrium systems.

3.4.3 Off-Diagonal Update

3.4.3.1 What is Worm?

The off-diagonal update changes the shape of the worldlines, such as spin/boson
configurations and operator types. It is not trivial to update them efficiently with
keeping the periodicity in the imaginary-time direction. Naive local updates like
insertion of pair off-diagonal operators is hardly accepted when the interval time is
not short although this kind of local updates had been used for years. One of signif-
icant progresses of the QMC method was the developments of the nonlocal update
methods; The standard method now is the loop algorithm or the worm (directed-loop)
algorithm. In the case of quantum spin systems without external field, the loop algo-
rithm is very efficient, which is free from the critical slowing down [6]. However,
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the loop update becomes inefficient for soft-core bosonic systems because the size
of forced-made cluster necessarily differs from the true correlation length.

In the meantime, there are many interesting systems that are difficult to be locally
updated in the MCMC method because of strong constraints, such as a protein holding
problem, a statistical test, not to mention correlated quantum systems. Recently, some
efficient methods for these problems have been proposed. They are based on the idea
that configuration space is extended so that the constraint is partially broken. As an
example, an extended ensemble method for lattice proteins was proposed by Iba et al.
[14], where a double occupation prohibited in the original ensemble is allowed. The
worm algorithm, which was invented by Prokov’ev et al. [22] and later developed
by Syljuasen et al. into more efficient one called the directed-loop algorithm [26], is
also one of such approaches. In quantum spin systems, the worm is a pair of spin-
ladder operators, S+i and S−i ; here i is a site index. In bosonic systems, the worm

is a pair of creation and annihilation operators, a†
i and ai . In the worm update, we

insert this worm on worldlines as kinks with a certain probability. In other words,
an infinitesimal segment of worldline is flipped. Then we move a kink (one of the
pair) stochastically. Namely, the successive segments of worldline is flipped one after
another as illustrated in Fig. 3.2. When the moving kink comes back to the other, they
destroy each other with a certain probability. In the worm algorithm, we extend the
configuration space by breaking the constraint (conservation law) of the model so
that two kinks exist on the worldlines. The application range of the conventional

(a) (b)

Fig. 3.2 Example of the spin-worm update (from inserting to vanishing). First one chooses a site
and a time on the worldlines and inserts a pair of operators S+i and S−i (spin ladder operators).
Here i is a site index. In the figure, we choose site 0 and time ρinsert (ρ3 < ρinsert < ρ4). Then one
chooses a head of the worm and a worm-proceeding direction. When the worm head encounters an
operator, a pathway is chosen with a certain probability. Now the head deterministically moves on
the loop only by turn since we subtract constant 1/4 from the local operators Sr+1 · Sr . When the
head comes back to the tail, the worm vanishes from the worldlines with a certain probability
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worm, however, is limited to particle number conserving systems. We will, then,
extend the worm move so that also nonconserved particles can be correctly treated.

At first we will review the conventional worm update. It is actually a somewhat
different perspective from usual, e.g., about the detailed balance. Since we have two
degrees of freedom, spin and boson (phonon), in the spin-Peierls model (3.15), we
consider having the two (spin and boson) sets of worldlines and updating them by
using each worm.

3.4.3.2 Conventional Worm Move

Let us consider the spin worm update for the isotropic spin-Peierls model at first. It
is just the same with the simple antiferromagnetic Heisenberg model. An example of
the spin-worm update is shown in Fig. 3.2. We start with the worldline configuration
in Fig. 3.1.

The worm update is as follows: First, a site and a time is chosen on the world-
lines, and inserts a pair of operators. Here we choose site 0, and time ρinsert (ρ3 <

ρinsert < ρ4) as shown in Fig. 3.2a. Since the site configuration is up or down, the
order of spin ladder operators (S+0 and S−0 ) has to be as in the figure. Next we choose
the moving operator between the two. The mover is called the head of the worm,
and the other is called the tail. Here we choose S−0 as a head, and S+0 as a tail.
Let us move the head upwards. The spin configuration between the head and the
tail is being updated from down to up. How long the head goes is determined by
the change in diagonal (exponential) weight in the representation (3.7). In our spin-
Peierls model, we set H0 = H p, so that the weight of the configuration is not changed
by the spin-worm move between the operators. In general, the transition probability
between two configurations that have the same weight can be set to unity. Hence
the head can certainly go to the next operator. Now the head encounters operator
S+0 S−1 (ρ5). When the head visits an operator, we choose an exit (or a pathway) with
a certain probability. Each pathway is named as in Fig. 3.3. Now by choosing turn,
the operator is changed from S+0 S−1 to Sz

0 Sz
1, and the head is changed from S−0 to S−1

(Fig. 3.4). Then the head moves to the next operator, and chooses the exit and so on.
When the head comes back to the tail, the worm vanishes from the worldline with
a certain probability. This successive update from the insertion to the vanishment is
the one worm update. The worldline configuration is here changed from Fig. 3.2a,
b by the worm move. Let us, next, think of appropriate transition probabilities of
the worm update in general cases. Assume that a configuration is updated by the
worm as c → (c0, d0) → (c1, d1) → (c2, d2) → · · · → (cN , dN ) → c′, where
N is the number of operators the head visits, c and c′ are configurations before and
after the one worm update, ci is the i-th extended worldline configuration includ-
ing the worm and di is the worm-proceeding direction, up or down, after the i-th
operator. We emphasize that the configuration that the head moves upwards is distin-
guished from that it moves downwards. We define w(ci ,di ) as the weight of (ci , di ) and
p(ci ,di )→(ci+1,di+1) as the transition probability from (ci , di ) to (ci+1, di+1). When
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Fig. 3.3 Pathways of the worm head at a two-body operator. One exit is stochastically chosen
according to the weight change

Fig. 3.4 Configuration change by the worm that chooses turn. The operator is changed from S+0 S−1
to Sz

0 Sz
1, and the head is changed from S−0 to S−1

the worm scatters at operators, an exit is chosen by a probability that satisfies the
balance condition:

w(ci ,di ) =
∑

(ci−1,di−1)

w(ci−1,di−1) p(ci−1,di−1)→(ci ,di ) 1 ∞ i ∞ N . (3.43)

When the worm is inserted or vanished, the probabilities are determined so that they
satisfies these conditions:

w(c0,d0) =
∑

c

w(c) pw (3.44)

w(c′) =
∑

(cN ,dN )

w(cN ,dN ) pv, (3.45)
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where pw = pp ph pd , we choose the worm-insertion point with the probability pp,
the head with ph , and the proceeding direction with pd at configuration c, and we
vanish the worm with pv after moving. Finally the configuration becomes c′. The
balance condition between c and c′ in one worm update is then expressed as

√∑
N=1

∑
(c0,d0)···(cN ,dN )

∑
c

w(c) pw

N−1⎡
i=0

p(i→i+1) pv = w(c′). (3.46)

It is clear that this total balance is satisfied from the conditions (3.43), (3.44) and
(3.45). Note that each worm-scattering process never satisfy the detailed balance
because the backward transition from (ci , di ) to any (ci−1, di−1) does not occur;
that is, the moving direction is opposite. Also note that we can arbitrarily define
the extended configuration including the worm in order to make the update efficient
within the total balance. The artificial weight has to be reweighted in calculating
off-diagonal correlations as we mention later.

In general, it is difficult to find qualified transition probabilities also taking the
worm-proceeding direction into account. We have to, there, solve the huge simulta-
neous equation. If we assume that the direction does not matter to the configuration
weight, however, we can easily determine appropriate probabilities. The condition
(3.43) is reduced to a simpler form:

w(ci ) =
∑

ci−1,di−1

w(ci−1) p(ci−1,di1 )→(ci ,di ). (3.47)

Here, it is crucial to avoid the bounce process. When the head bounces, it just
cancels the last update; this is nothing but the rejection. Furthermore, the bounce
process will enhance the diffusion property of the worm head, which hinders efficient
sampling. We stress that our rejection-minimized methods that use the geometric
allocation algorithms (in Sect. 2.3) brilliantly perform for eliminating the bounce
process. Thus, the sampling efficiency is significantly improved by our optimized
worms. This application of our optimization method is one of the important points
for precise investigation of the spin-Peierls systems.

Note that, in the previous literature, the pseudo detailed balance

w(ci−1) p(ci−1,di−1)→(ci ,di ) = w(ci ) p(ci ,d ′i )→(ci−1,d ′i−1)
(3.48)

is used, where the directions d ′i−1 and d ′i are opposite to di−1 and di , respectively. Still,
the detailed balance of each worm scattering is not satisfied although this difference
has never been stressed before. Nevertheless, with similar conditions assumed in the
worm insertion/vanishment, the detailed balance condition of the one worm update

w(c p(c→c′)) = w(c′) p(c′→c) (3.49)

http://dx.doi.org/10.1007/978-4-431-54517-0_2
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Fig. 3.5 Example that the worm cannot go jump. It is because the matrix element ⊂↑↑ |− (Sz
0 Sz

1−
1/4)| ↑↑→ = 0. We subtract constant 1/4 from operator Sr+1 · Sr in order to make the worm to go
only turn in the conventional move

is derived. Although this property is one of interesting points of the worm algorithm,
the detailed balance is not necessary as we know. Particularly for the boson worm
update, the efficiency is indeed improved by breaking it in our simulations .

Next we shall see an example of the worm scattering probabilities of the spin
worm. Let us set the subtracted constant C to 1/4 and invert the negative off-diagonal
elements of Eq. 3.24, which does not change the physics as mentioned in Sect. 3.4.1.
Then the matrix forms as

− Hs
r+1,r = J̃

⎜
⎝⎝⎝⎝⎝⎝

0 0 0 0

0 1
2

1
2 0

0 1
2

1
2 0

0 0 0 0




| ↑↑→
| ↑↓→
| ↓↑→
| ↓↓→

. (3.50)

In this case, the head cannot go straight or jump because the matrix element becomes
zero, e.g., ⊂↑↑ | − (Sz

0 Sz
1 − 1/4)| ↑↑→ = 0 by jump as in Fig. 3.5. Therefore the

head must go turn or bounce. Since the matrix element of − (Sz
i Sz

j − 1/4) and that

of the off-diagonal operator (S+i S−j + S−i S+j ) are the same value 1/2, we can move
the head by turn with probability unity. Hence the worm deterministically moves
on the each loop as in Fig. 3.2. This update is exactly the same with the single loop
update of the loop algorithm [7]. If we subtract a constant above 1/4 in the model,
the worm can go also straight and jump.

The remaining question is how many worms should be inserted in one Monte Carlo
step. The update efficiency varies according to the number of the worms, namely, the
ratio between the diagonal update and off-diagonal update. Although it is possible to
update by not one but some worms simultaneously, we insert a new worm one by one
after the previous worm vanishes. The efficiency of the multi-worm update needs to
be investigated in the future. We perform several-time single worm updates in one
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Monte Carlo step so that the total length of spin/boson worm trajectory averagely
becomes Nκ (the volume of the worldlines), where N is the number of sites and
κ is the inverse temperature. It is necessary, here, to tune the average of total path
lengths. If we set a definite number of inserted worms in one Monte Carlo step,
however, it is difficult to tune the length since the number is an integer. Instead of
fixing, we stochastically determine the number at each Monte Carlo step from the
Poisson distribution. Then we can tune the ratio as a continuous value by controlling
the expecting value of the distribution.

3.4.3.3 Boson Worm Proceeding

The spin worm can certainly reach the next operator after scattering at an operator
since the (exponential) weight that depends on

H0 = H p =
∑

r

λa†
r ar (3.51)

is not changed. This term, however, matters for the boson-worm move. Let us think
of the worm-proceeding probability with the change in this weight. We consider
the bosonic worm that is a pair of the creation operator a† and the annihilation
operator a on the occupation number basis. From the weight expression ( 3.7) in the
continuous-time representation, the multiplied weight is e−ρλαn if the occupation
number is changed in αn during the interval time ρ . When αn is negative, the weight
gets heavier. Thus, the head can certainly proceed in the time ρ . On the other hand,
when αn is positive, the weight gets lighter. Hence, the probability that the head can
proceed in ρ is just the multiplied weight e−ρλαn from the Metropolis algorithm.
The PDF of the stochastic process that the head goes in ρ is expressed by

P(ρ ) = e−ρλαn⎠√
0 dρe−ρλαn

= λαne−ρλαn . (3.52)

Therefore, this is the Poisson process again; the worm move is independent at each
imaginary time. Then, the proceeding time can be generated by the exponential
distribution.

In the simple model (3.15), there is no bosonic hopping term. For the dispersive
phonon, however, such a kinetic term appears. Then also the bosonic worm scatters at
the kinetic operators like the spin move we explained in the last subsection. We will
introduce the hopping term for systems beyond the one-dimensional system later.

3.4.3.4 Warp Update

In the spin-Peierls model (3.15), we have to update the operator from Sr+1 · Sr to
ar Sr+1 · Sr or a†

r Sr+1 · Sr , or vice verse. However, the conventional worm update
does not satisfy the ergodicity (irreducibility) in the present model, not including
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(a) (b)

Fig. 3.6 Example of the warp update on the boson worldlines. The number i , j , and k are site
indices, and these can be any site on the worldlines. An operator SS in the figure represents a spin
operator linked to the boson worldline. In the boson worm update, it is not important which bond
the spin operator is on

these updates. For ensuring the ergodicity, we introduce a new type of update, the
warp update. Now suppose that we insert the worm at time ρ ′ ( ρ1 < ρ ′ < ρ2) on
the boson worldline and move the head a†

j upwards as illustrated in Fig. 3.6a. An
operator SS in the figure represents a spin operator linked to the boson worldlines. In
the boson worm update, the type of spin operator does not matter since the spin state
is not changed during the update. When the head encounters SS(ρ3), we conduct
the following update at once: We stop the head at operator SS(ρ3), which changes
SS(ρ3) to a†

j SS(ρ3), insert a pair of a and a† at operator SS(ρ4), and move operator

ak as a new worm head, which also changes the operator from SS(ρ4) to a†
k SS(ρ4).

By this update, the worm head warps from site j to site k (from time ρ3 to time ρ4),
and the worldline configuration is updated from (a) to (b) in Fig. 3.6. Here site j and
k can be any site on the worldlines. To sum up, when the head of boson worm a†/a
encounters an operator that has a spin term SS, we perform the following update:

• If the SS operator does not have a boson operator or has a conjugate operator to
the head, do the following warp update. Otherwise, go straight or bounce.
• warp update

– Choose an operator from all that includes a spin operator SS on the wold-lines.
– Choose a pathway among candidate configurations with probabilities that satisfy

the condition (3.47).

If the chosen operator is SS in the warp update, we have a choice that we insert a
new worm at the operator SS on the worldline. If the chosen operator is aSS/a†SS,
on the other hand, we have a choice that we move the trapped bosonic operator a/a†

as a new head. Note that this warp update can satisfy the ergodicity in the extended
configuration space including the worm. This property is essential to measure the
off-diagonal correlation functions as we mention in the next subsection. In practice,
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how to determine the warp probability is not trivial since there are many possible
pathways in this simultaneous update. Note that this warp trial is very often rejected if
the simple Metropolis algorithm is used. However, we can indeed make the bosonic
worm free from the bounce process at the operators by applying our geometric
algorithms under the total balance condition (3.43) or (3.47).

3.4.4 Off-Diagonal Measurement

3.4.4.1 Correlation Function

In order to look into a lattice order in the spin-Peierls model (3.15), it is necessary
to measure the correlation functions:

⊂qr qr ′ → = 1

2
∈

mc

〈
(a†

r + ar )(a
†
r ′ + ar ′)

〉
, (3.53)

where the relation of the second quantization (3.2) is used. Here, ⊂ar ar ′ → and ⊂a†
r a†

r ′ →
take nonzero values since the model does not conserve the boson number. Our method
can precisely calculate also the lattice correlation by measuring boson operator cor-
relations. Let us recall the definition of the thermal average:

⊂ar ar ′ → = tr ar ar ′e−κH

tr e−κH
, (3.54)

and take notice of each configuration that contributes to the denominator or the
numerator in the right-hand side. It is original worldline configurations that contribute
to the denominator. On the other hand, it is a part of the extended configurations with
the worm that contribute to the numerator. The denominator is expressed as the
sum of the weights of the original configurations, and the numerator is expressed
as that of the partial extended configurations. Here, we need to be reminded that
each configuration is visited with the frequency proportional to its defined weight in
the Markov chain. This fact enables us to calculate the correlation function ⊂ar ar ′ →
by simply counting the frequency of visiting each configuration that contributes to
the denominator or the numerator [22]. In order for this ratio to be unbiased, it
is necessary to satisfy the ergodicity (irreducibility) in the extended configuration
space. Our update method with the warp certainly ensures this condition.

In more detail, let us see an example of the way to calculate the correlation
function ⊂a j ak→, where j and k are site indices. Now let us assume that after we
inserted the boson worm on the worldline at imaginary time ρ ′ (Fig. 3.7a), the worm
warped from SS(ρ3) to SS(ρ4) (Fig. 3.7b) as mentioned in Sect. 3.4.3.4, and the worm
head has moved downwards going straight at operator SS(ρ2). Then, the head passes
the imaginary time ρ ′ where the tail is on. When the head comes to just time ρ ′,
the extended configuration contributes to the numerator in the definition of ⊂a j ak→
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(a) (b) (c)

Fig. 3.7 Calculation of the correlation function ⊂a j ak→. When the worm head passes time ρ ′ where
the tail is on, we add the ratio of the weights wtrue/wsim, where the weight wtrue is the weight when
we assume the worm has the matrix element of the actual bosonic operator, and the weight wsim is
the weight that we use to construct the worm update

(Fig. 3.7c). Then, we store the ratio of the weights wtrue/wsim, where wtrue is the
weight of the configuration when we take into account the true matrix elements of
the worm operators (head and tail), and the weight wsim is the weight that we define
to the extended configuration in the simulation. Although we can choose wsim as the
same with wtrue, which eliminates the need of reweighting, it is better to optimize
the weight wsim so that the worm update becomes efficient. In our program, we set
wsimto wtrue/w2

tail, where wtail is the true matrix element of the tail operator. By this
select, the worm insertion and remove are accepted with probability 1 under the
conditions (3.44) and (3.45), the bounce process can be completely eliminated at
the operators, and the reweighting for off-diagonal correlations becomes easy since
the factor is unchanged through one worm update. After several-time worm updates,
we can finally evaluate the correlation function as O1/2O2, where observable O1
is the sum of the reweighting factors wtrue/wsim accumulated when the head a j/ak

and the tail ak/a j exist at the same imaginary time, observable O2 is the number of
times that we try to insert the worm at the site j or k, and the factor 2 is the number
of directions. The reason why we divide by O2 is that we interpret the events of
vanishing the worm or failing to insert the worm as meaning that one of original
configurations is visited according to its original weight. The reason by 2, on the
other hand, is because we doubly count the case where the head goes upwards and
downwards (note that we assume that the direction does not matter to the weight).
We emphasize that the conventional worm algorithm without the warp update cannot
measure these correlation functions. For example, in the case where there is no
other operator than illustrated in Fig. 3.7c on the whole worldlines, this extended
configuration never appears during the simulation if we use the conventional worm
update alone. Meanwhile, it is necessary to satisfy the ergodicity also in the extended
configuration space including the worm for calculation of correlation functions. The
present warp update is the most natural extension of the conventional worm update
for satisfying the ergodicity of particle number nonconserving systems.
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Although we have seen the example of calculation of the equal time correlation
function ⊂a j ak→, we can similarly measure the dynamical correlation functions and
other combination, e.g., ⊂a†

j a
†
k →. When we intend to measure the dynamical correla-

tion function ⊂a j (ρ )ak→, we sum up the reweighting factor just when the time interval
between the head and the tail becomes ρ .

3.4.4.2 One-body Operator

We will mention an another off-diagonal average with one-body operator here. We
have seen that we can calculate effectively the off-diagonal correlation functions
by using the worm with warp in the last section. Since the worm is the pair of
operators, we can calculate two-point correlations by the worm. However, one-body
off-diagonal averages, such as ⊂a→ and ⊂a†→, cannot be measured by the worm. In
order to calculate these quantities, we introduce the bug update. The bug is a moving
one-body operator on the worldlines as the worm without tail. Let us see an example
of the bug update. When the configuration is as Fig. 3.8a (note that only a part of
the configuration is illustrated), we insert a pair of bosonic operators (ak and a†

k ) at

operator SS(ρ2) and pin one a†
k to SS(ρ2), move the other ak downwards as the bug

with a certain probability (Fig. 3.8(a) → (b)). When the bug encounters operator
SS(ρ1), we stochastically stop the bug at the operator (Fig. 3.8(b)→ (c)). Next, let us
see an another example of the bug update. When the configuration is as Fig. 3.8f, we
move operator ak of operator ak SS(ρ1) upwards with a certain probability. When the
bug encounters operator a†

k SS(ρ2), we vanish the bug and operator a†
k stochastically.

As we see, we insert or move the bug at operators SS or from aSS/a†SS and
stop or vanish the bug at operator SS or a†SS/aSS, respectively. Not having the
tail, the bug can end at any operator including a spin term SS on the worldlines.
This is the essential difference from the worm that necessarily ends at the insertion
point. The probabilities in the bug update are determined in a manner similar to the
worm. The difference is to include a configuration without the bug as a candidate.
We also need to take into account the probability that the spin operator is chosen as
a bug start point in the update.

(a) (b) (c) (d) (e) (f)

Fig. 3.8 Examples of the bug update where the bug moves from ρ2 to ρ1 and from ρ1 to ρ2
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Through this bug move, we can measure one-body quantities ⊂a→ and ⊂a†→ in the
same way as the two-body correlation functions (Sect. 3.4.4.1). In more detail, let us
see an example of the way to calculate the average ⊂a→. When we intend to calculate
the average ⊂ak(ρ )→, where k is a site index, we simply count the frequency that the
bug ak passes through imaginary time ρ on the worldline. Since the average ⊂ak(ρ )→
is independent of the time from the cyclicity of the trace, it is better to integrate
the total visiting time on site k and divide it by κ. When the bug proceeds in αρ

(Fig. 3.8(b) → (c)), we store the value αρwtrue/wsim, where wtrue is the weight of
the configuration including the true matrix element of ak , and wsim is the weight we
define to the configuration in simulations. Finally, we can evaluate the average ⊂ak→ as
O1/2κO2, where observable O1 is the sum of the reweighting factors αρwtrue/wsim,
observable O2 is the number of times that we try to start the bug at site k, and the
factor 2 is the number of directions in a similar way to the two-body correlation
functions. Since the coordinate operator of the lattice degree of freedom is expressed
as Eq. 3.2, we can calculate the average of position by measuring the averages ⊂ar →
and ⊂a†

r →, which are available by our bug update. Also note that we do not warp the
bug for simple calculations of the bug insertion/vanishment.

3.4.5 Programming Details

During the diagonal update we use some techniques in order to make the succeed-
ing worm update easier and faster. One of them is the pre-determination of worm-
insertion places. Instead of choosing an worm-starting point after the diagonal update,
we insert worm-insertion points during the diagonal update. If we intend to make
n points averagely, the weight for the exponential distribution should be nκ. By
this way, the ratio between the diagonal update amount and the off-diagonal update
amount varies stochastically because the actual worm number fluctuates during the
simulation. The merit of this pre-determination of insertion points is that we can
store the information about the connection between the points and the surrounding
operators before inserting the worms actually. Although it is normally costly to check
if the worm comes back to the tail or not, we can do it easily by this manner.

Second is to insert the checkpoints at the both edge of the worldlines, that is, at
imaginary time 0 and κ. We need to check what time the worm passes in order to
calculate correlation functions. If a case is considered where the worm goes through
the imaginary-time boundary ρ = 0 and ρ = κ, it costs some CPU time to get to
know what time is passed. We can check this readily by inserting the end points of the
worldlines. Though we insert the extra artificial points on the worldlines, they does
not affect any physical quantities due to the memoryless property of worm move.
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Chapter 4
Quantum Monte Carlo Level Spectroscopy

4.1 Scaling from Finite-Size Data

We will introduce an efficient scaling method for investigating systems with strong
finite-size effect and develop a combination with the QMC method in this chapter.
In many continuous transitions, physical quantities diverge in a power-law form at
transition point. The finite-size scaling method [5], where the critical exponents are
fitted as parameters from data of finite-size systems according to the scaling hypoth-
esis, can perform for such a continuous transition and correctly give the transition
point and the universality class. However, for the Kosterlitz-Thouless (KT) transi-
tion, where physical quantities, e.g., the correlation length, exponentially diverge at
the critical point, this conventional finite-size scaling method does not work because
exponentially large system sizes are needed for the scaling. As an example, Seiler
et al. [42] mistakenly concluded the universality class of the phase transition in the
Z(10) clock model as not the KT transition, which is analytically confirmed, but the
continuous transition following a power-law form. Also Edwards et al. [14] pointed
out that it is extremely difficult to distinguish between the KT and power-law scaling
scenarios from reachable system-size data; the critical exponents can be wrongly
fitted by a power-law form even if it is actually the KT transition.

For overcoming the difficulty of the KT-transition analysis in one-dimensional
quantum systems, the level spectroscopy was invented [34–38]. Let us consider the
S = 1/2 frustrated J1-J2 spin chain model described as

H = J1

∑
r

(Sx
r Sx

r+1+Sy
r Sy

r+1+κSz
r Sz

r+1)+ J2

∑
r

(Sx
r Sx

r+2+Sy
r Sy

r+2+κSz
r Sz

r+2).

(4.1)
This model is an effective model of our spin-Peierls model and a good example where
the level spectroscopy powerfully performs. Now, let us consider the isotropic case
κ = 1. The ground state phase diagram is characterized by the ratio γ = J2/J1.
For γ = 0, the system is reduced to the simple Heisenberg spin; the ground state
is the Tomonaga-Luttinger (TL) liquid state, and the excitation is gapless, which is
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Study of Quantum Spin-phonon Complex Systems, Springer Theses,
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obtained by des Cloizeaux and Pearson [11]. On the other hand, for γ = 1/2, the
system is at the Majumdar-Ghosh point [31]; the ground state is simply the direct
product of local spin singlets and doubly degenerated, and the excitation has a gap.
Therefore, the quantum phase transition between the liquid phase and the dimer
phase occurs in 0 ∈ γ ∈ 1/2.

Several theoretical approaches have been applied to determine the transition point.
Haldane [19] transformed the isotropic model into the effective spinless fermion
model via the Jordan-Wigner transformation. Taking the continuum limit and apply-
ing the renormalization group argument, he predicted the phase transition point at
γ = 1/6. Kuboki and Fukuyama [30] further transformed the fermions into the phase
Hamiltonian by means of the bosonization method. They predicted the critical value
is γ = 1/3, pointing out Haldane had an invalid treatment for an oscillating term of
the fermionic field. In the meantime, Tonegawa and Harada [46] numerically diago-
nalized the finite-size original spin Hamiltonian. They concluded the phase boundary
exists at γ = 0.30 ± 0.01, finding the point where the singlet-triplet gap becomes
zero. Due to the strong finite-size effect (logarithmic correction from marginal term),
however, it is difficult to judge that the gap becomes zero or finite after extrapolating
it to the thermodynamic limit.

In order to improve the accuracy of the extrapolation, Okamoto and Nomura [38]
discussed the level crossing of the excitation energies. In the liquid phase of the
J1-J2 model, the first excitation is labeled as the S = 1 triplet state that has the
wavenumber k = λ , being predicted by the spin wave theory. In the dimer phase,
on the other hand, the first excitation is labeled as the S = 0 singlet state that has
also the wavenumber k = λ . This excitation gap gets exponentially small as the
system size becomes large, and the ground state is doubly degenerated in the ther-
modynamic limit. Therefore, these different excitation gaps intersect at the transition
point. Okamoto and Nomura [38] showed the two gaps linearly cross on γ axis and
the size dependence of the crossing point is free from the logarithmic correction.
Extrapolating the point obtained by the exact diagonalization method, they clari-
fied the critical point as γ = 0.2411 ± 0.0001. Also for anisotropic cases, such
quantities without logarithmic correction can be made by combining several critical
dimensions, as we will show for the spin-Peierls model in Chap. 5. As the above
discussion, the elimination of the problematic correction terms is the key strategy in
the level spectroscopy.

4.2 J1- J2 and Sine-Gordon Model

We will, next, consider the phase diagram of the J1-J2 model (4.1) for κ ⊂ 0.
Let us follow the discussion of Ref. [35]. The spin degree of freedom in the one-
dimensional quantum model is transformed to the spinless fermion by the Jordan-
Wigner transformation. With the abelian bosonization technique to the fermion, the
original Hamiltonian (4.1) can be mapped into the quantum sine-Gordon model [30]:

http://dx.doi.org/10.1007/978-4-431-54517-0_5
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HSG = v

2λ

∫
dx

[
K (λΠ)2 + 1

K
(ρxφ)2

]
+ 2gφ

(2λa)2

∫
dx cos

→
8φ, (4.2)

where the commutation relation

[
φ(x),Π(x √)

] = iβ(x − x √) (4.3)

holds, and a is the lattice constant. The spin velocity v, and the Luttinger parameter
K , and the coupling constant gφ are related to γ, κ through

v = 2
→

AC K = 1

2λ

√
C

A
gφ = −2λ2a2 D, (4.4)

where

A = a

8λ

(
1+ 3κ

λ
+ (6+κ)γ

λ

)
(4.5)

C = 2λa

(
1− κ

λ
− (2−κ)γ

λ

)
(4.6)

D = 1

2a
(κ− (2+κ)γ). (4.7)

These expressions are reliable only near κ = 0 and γ = 0. The quantities v and K
for γ = 0 can be exactly evaluated from the Bethe ansatz [7] as

v = Ja
λ
→

1−κ2

2 cos−1 κ
= Ja

sin(λΔ)

2(1− Δ)
(4.8)

K = λ

λ − cos−1 κ
= 1

Δ
. (4.9)

where, Δ is the critical exponent of two-point spin-correlation functions. The dual
field α(x) is defined as ρxα(x) = λΠ(x). Here we compactify the scalar boson fields
as φ ≡ φ + →2λ , and α ≡ α + →2λ , which restores the U (1) symmetry of the
spinless fermion field.

For the free field theory, the operator exp(±im
→

2φ) has the scaling dimension
K m2/2, and the operator exp(±in

→
2α) has n2/2K , where integer variables m and

n are magnetic and electric charges, respectively, in the Coulomb gas picture [23].
At the Heisenberg point (κ = 1), the Luttinger parameter K = 1, and the scaling
dimension of the cosine interaction term becomes 2; that is, it is a marginal operator.
From the relations (4.4) and (4.7), the next-nearest interaction reduces the marginal
operator. When the marginal term becomes zero, the phase transition occurs. It is,
however, not possible to determine the accurate phase boundary from only these rela-
tions (although Kuboki et al. [30] concluded the transition point from this formula).
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Fig. 4.1 Renormalization flow (left) in the quantum sine-Gordon model and the phase diagram
(right) of the J1-J2 model (4.1). In the left figure, the corresponding phases of the J1-J2 model
are shown. Although the renormalization-group equation (4.10) does not produce the accurate
transition point, it is possible to determine the phase boundary from the level crossing by the
numerical diagonalization method. These figures are taken from Ref. [35]

Nevertheless, the renormalization group analysis illuminates the aspect of the phase
diagram.

The renormalization-group equations up to the lowest order are

dy0(ν)

dν
= −y2

φ(ν)
dyφ(ν)

dν
= −yφ(ν)y0(ν), (4.10)

where
y0(0) = g0

λu
yφ(0) = gφ

λu
K = 1+ g0

2λu
. (4.11)

The renormalization flow is shown in Fig. 4.1. For the finite spin system, ν is related
to the number of site L by eν = L . There are three phases: the TL liquid phase, the
dimer phase, and the Néel phase. The quantum phase transition between the TL liq-
uid phase and the dimer/Néel phase becomes the KT type. By contrast, the transition
between the Néel phase and the dimer phase belongs to the Gaussian universality
class, where the critical exponent continuously varies. Meanwhile, as a numerical
method for determining the fixed point from finite-size data, the phenomenologi-
cal renormalization-group method have been applied to many systems [33]. It is,
however, noteworthy that Inoue and Nomura [21] showed analytically the phenom-
enological renormalization-group equation gives a wrong fixed point owing to the
finite-size corrections for the KT transition.

Then, Nomura and Okamoto [35] developed the level spectroscopy and deter-
mined the phase boundary. Moreover, they accurately identified the universality class
of the phase transitions, showing the logarithmic correction can be eliminated in a
combination of the scaling dimensions of the relevant, irrelevant, and marginal oper-
ators. The tactically combined quantities enable us to take a correct extrapolation to
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the thermodynamic limit. As we will see in Chap. 5, we can investigate the phase
transition of the spin-Peierls model with the help of this level spectroscopy.

4.3 Accurate Gap Estimation

We will introduce a new estimator sequence in this section for accurately calculating
an excitation gap, which is utilized for the level spectroscopy. For small systems,
it is easy to get the gap by the exact diagonalization method. For large systems,
however, the diagonalization is not feasible. In the meanwhile, it is not trivial to get
precise spectrum information from QMC data. Note that it is impossible so far, in
most cases, to simulate dynamics of large quantum systems.1 We need to obtain the
gap from equilibrium simulations, but it cannot be expressed as an expectation value
of a certain operator.

The spectral information is hidden in the imaginary-time (dynamical) correlation
function:

C(τ ) := 〈Ô†(τ )Ô↑
= 1

Z
tr
⎡
eτ H Ô†e−τ H Ôe−βH

⎢

= 1

Z

∑
ν,ν√
〈ν|e−(β−τ)Eν Ô†|ν√↑〈ν√|e−τ Eν√ Ô|ν↑

= 1

Z

∑
ν,ν√

⎣⎣⎣〈ν√|Ô|ν↑
⎣⎣⎣2 e−τ(Eν√−Eν)e−βEν , (4.12)

where Ô(τ ) = eτ H Ôe−τ H is an operator at τ , 〈 Â↑ = tr
[
Ae−βH

]
/Z is the thermal

average of Â (β is the inverse temperature), Z = tr
[
e−βH

]
is the partition function,

Eν and |ν↑ are the eigenvalue and eigenstate of the Hamiltonian as H |ν↑ = Eν|ν↑,
respectively. The set of eigenvectors {|ν↑} is complete in the Hilbert space and the
identity operator

⎤
ν |ν↑〈ν| = 1 is inserted. We use a Fourier transformed operator:

Ôk = 1→
N

∑
r

Ôr eikr , (4.13)

where N is the number of sites in a lattice system. Let us here consider the her-
mitian operators for simplicity, Then, because the following relation satisfies for the
hermitian operators ⎣⎣⎣〈ν|Ô|ν√↑

⎣⎣⎣2 =
⎣⎣⎣〈ν|Ô†|ν√↑

⎣⎣⎣2 , (4.14)

1 These days some quantum dynamics have been investigated [18, 48] by the real-time QMC
simulation using the dynamical mean-field theory and the Keldysh formalism. The difficulty of the
negative sign is alleviated by reducing the expansion order.

http://dx.doi.org/10.1007/978-4-431-54517-0_5
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the correlation function (4.12) is rewritten as

C(τ ) = 1

Z

∑
〈ν,ν√↑

⎣⎣⎣〈ν|Ô|ν√↑
⎣⎣⎣2
⎡
e−τ(κE)νν√ e−βEν + eτ(κE)νν√ e−βEν√

⎢

= 1

Z

∑
〈ν,ν√↑

⎣⎣⎣〈ν|Ô|ν√↑
⎣⎣⎣2 2

e−
β
2 (Eν+Eν√ )

cosh

[(
τ − β

2

)
(κE)νν√

]
, (4.15)

where (κE)νν√ = Eν√ − Eν, and 〈ν, ν√↑ is a pair of the eigenstates |ν↑ and |ν√↑,
respectively.

Let us consider the Fourier transformation at the Matsubara frequency ω j =
2λ j/β ( j is an integer):

C̃(ω j ) :=
∫ β

0
dτC(τ )eiτω j

= 1

Z

∑
〈ν,ν√↑

⎣⎣⎣〈ν|Ô|ν√↑
⎣⎣⎣2 2

e−
β
2 (Eν+Eν√ )

∫ β

0
dτ cosh

[(
τ − β

2

)
(κE)νν√

]
eiτω j

= 1

Z

∑
〈ν,ν√↑

⎣⎣⎣〈ν|Ô|ν√↑
⎣⎣⎣2 2

e−
β
2 (Eν+Eν√ )

sinh

(
β

2
(κE)νν√

)
2(κE)νν√

ω2
j + (κE)2

νν√

= 1

Z

∑
〈ν,ν√↑

⎣⎣⎣〈ν|Ô|ν√↑
⎣⎣⎣2
⎥

e−βEν − e−βEν√
⎦ 2(κE)νν√

ω2
j + (κE)2

νν√
. (4.16)

When the periodic boundary condition holds in the real space, the similar expressions
with Eqs. (4.15) and (4.16) are derived also for k ↓= λ . By taking the limit β →∞,
the asymptotic forms of the correlation functions become

C(τ ) →
∑

ν

⎣⎣⎣〈ν|Ô|gs↑
⎣⎣⎣2 e−τ(κE)ν (4.17)

C̃(ω) →
∑

ν

⎣⎣⎣〈ν|Ô|gs↑
⎣⎣⎣2 2(κE)ν

ω2 + (κE)2
ν

. (4.18)

In the expression, we write the ground state as |gs↑ and the excitation energy of state
|ν↑ as (κE)ν. The states |ν↑ satisfying the condition 〈ν|Ô|gs↑ ↓= 0 are labeled as
(κE)1 ∈ (κE)2 ∈ · · · . Here, we assume the conditions

Ô|gs↑ ↓= 0 (4.19)

〈gs|Ô|gs↑ = 0 (4.20)

in order for the following method to work. For example, in the case where the latter
equation is not satisfied, the susceptibility C̃(0) trivially diverges.
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If we take the analytic continuation from the Matsubara frequencies to the real
axis, we will get the spectral function. Such a transformation, however, is known
as an ill-posed problem and numerically very difficult like the inverse Laplace
transformation, where the result is not stable to a small input perturbation. Nev-
ertheless, some effective methods have been proposed to acquire the spectrum infor-
mation from the QMC data. One example, which is probably the simplest way to
know the lowest gap, is to measure dumping of the imaginary-time correlation; the
lowest excitation gap dominates in large τ limit, and the dumping factor becomes
(κE)1 expressed as Eq. (4.17). Another example is the maximum entropy method
[17, 20, 40, 43, 44], where one assumes the spectral function form and reconciles
the assumption and noisy data by means of the Bayesian inference. It is often possi-
ble to elicit the whole spectral information by this approach. Although this method
is of interest from the viewpoint of statistics, the accuracy depends greatly on the
assumption and parameters. Particularly, it is extremely difficult to obtain the lowest
gap value.

We, then, extend the moment method [12] to estimate the gap, focusing the
attention on the correlations at the Matsubara frequencies (4.18). Again note that
the problem is to estimate the gap (κE)ν or the imaginary-time correlation length
ξν = 1/(κE)ν, given the correlations C̃(ω j ) that necessarily have a statistical error.
Particularly let us consider estimating ξ1 or (κE)1. Here, we cannot directly solve
the nonlinear simultaneous equation (4.16) or (4.18). Let us consider the simplest
case where the index ν takes only one state in Eq. (4.18). The correlation is simply
expressed as

C̃ (0)(ω j ) = b1ξ1

1+ ω2
jξ

2
1

, (4.21)

where b1 = 2
⎣⎣⎣〈1|Ô|gs↑

⎣⎣⎣2. Similarly, we define bν = 2
⎣⎣⎣〈ν|Ô|gs↑

⎣⎣⎣2 below. This

is nothing but the Ornstein-Zernike form, which expresses a correlation function
derived from the mean-field treatment generally [8, 12]. Thus, the correlation length
can be extracted as the so-called second moment

ξ̂ (0) = 1

ω j

⎛
C̃(0)

C̃(ω j )
− 1. (4.22)

Here the smallest frequency ω j = ω1 is usually used. This quantity becomes the
exact correlation length ξ1 when the correlation C̃ forms as C̃ (0). In fact, it is also
written as exactly the second moment

ξ2
1 ∀

∫
dτ τ 2C̃0(τ ), (4.23)

where C̃ (0)(τ ) = ⎜
dω C̃ (0)(ω)eiτω ∀ e−τ/ξ1 . This approximated correlation length

ξ̂ (0) is used in many QMC simulations. We have to carefully, however, take notice
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that this estimator has not only statistical error but also systematic error. For β →∞,
the systematic error is expressed as

ξ̂ (0)

ξ1
→ 1− 1

2

∑
ν>1

bν

b1

ξν

ξ1
+ O

⎝(
ξν

ξ1

)2
)

. (4.24)

In the meantime, the correlation length is utilized for finding the transition point and
the critical exponent of many continuous transitions; the ratio ξ1/L intersects at the
transition point. Here we can use ξ̂ (0)/L instead. It is because the correction ξ̂ (0)/ξ1
is constant and does not depend on the system size although the lengths ξν all diverge
in proportional to L at the critical point. This finite-size scaling, however, does not
work for the KT transition since the critical phase extend over the transition point.

For the level spectroscopy, even the above constant correction hinders us from
extrapolating correctly. Let us consider eliminating the correction term in Eq. (4.24).
As shown in the expression, ξ̂ (0) has the corrections from the first order of the ratio
ξν/ξ1 (that’s why the second moment corresponds to the 0-th order approximation).
Then, we consider including the first order terms of ξν in Eq. (4.18), and approxi-
mating the correlation function as

C̃ (2)(ω j ) = b1ξ1

1+ ω2
jξ

2
1

+
∑
ν>1

bνξν. (4.25)

We can elicit a higher order gap estimator [45] from this expression as

ξ̂ (2) = 1

ω2

⎛
3

C̃(0)− C̃(ω1)

C̃(ω1)− C̃(ω2)
− 1. (4.26)

If the correlation C̃ formed as C̃ (2), this quantity would become the exact correlation
length ξ1. The actual systematic error for β →∞ is expressed as

ξ̂ (2)

ξ1
→ 1− 1

2

∑
ν>1

bν

b1

(
ξν

ξ1

)3

+ O

⎝(
ξν

ξ1

)4
)

, (4.27)

where the correction terms appear only over the second order of ξν/ξ1.
In a similar way, when we approximate the correlation as

C̃ (4)(ω j ) = b1ξ1

1+ ω2
jξ

2
1

+
∑
ν>1

bνξν(1− ω2
jξ

2
ν ), (4.28)

a further higher order estimator



4.3 Accurate Gap Estimation 77

ξ̂ (4) = 1

ω3

⎛
10

3C̃(0)− 4C̃(ω1)+ C̃(ω2)

5C̃(ω1)− 8C̃(ω2)+ 3C̃(ω3)
− 1 (4.29)

can be constructed.
For general order n = 2p (p ⊂ 2), considering a generalized approximated

correlation function

C̃ (n)(ω j ) = b1ξ1

1+ ω2
jξ

2
1

+
∑
ν>1

bνξν

⎥
1− ω2

jξ
2
ν + · · · + (−1)p−1ω

2(p−1)
j ξ

2(p−1)
ν

⎦
,

(4.30)
we obtain an gap estimator as

ξ̂ (n) = 1

ωp+1

√
γ(n) R(n) − 1, (4.31)

where

γ = x1
∏p

k=1 k2

⎤p+1
i=1 yi

∏
k ↓=i k2

(4.32)

R(n) = x1C̃(0)+ x2C̃(ω1)+ · · · + x p+1C̃(ωp)

y1C̃(ω1)+ y2C̃(ω2)+ · · · + yp+1C̃(ωp+1)
. (4.33)

The coefficiencies are the solution of the following Vandelmonde linear problem:

V t (1, 22, 32, . . . , p2)x̃ = (−x1, 0, 0, . . . , 0)t (4.34)

V t (1, 22, 32, . . . , (p + 1)2)y = (0, 0, 0, . . . , 0, s)t (4.35)

s =
p+1∑
k=1

kn yk, (4.36)

where the Vandelmonde matrix is defined as:

V (z1, z2, . . . , zN ) =


⎞⎞⎞⎞⎞⎞⎟

1 z1 z2
1 · · · zN−1

1

1 z2 z2
2 · · · zN−1

2
...

...
...

. . .
...

1 zN z2
N · · · zN−1

N

⎠


, (4.37)

and the vectors as
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x̃ = (x2, . . . , x p+1)
t (4.38)

y = (y1, y2, . . . , yp+1)
t . (4.39)

Note that the dimension of the solution vector space x = (x1, x̃ t )t and y is one.
Nonetheless, the product γ(n) R(n) is unique. The systematic error becomes

ξ̂ (n)

ξ1
→ 1− O

⎝(
ξν

ξ1

)(n+1)
)

(β →∞). (4.40)

This estimator is presumably unique when we are allowed to use only C̃(0), C̃(ω1) · · ·
C̃(ωp+1), on condition that the terms until (n)-th order of the ratio ξν/ξ1 are cor-
rectly included. Because the statistical error of a linear combination increases as the
number of used estimators, this is an optimal estimator for the gap calculation. We
can calculate the first excitation gap more accurately; the systematic error of the esti-
mators becomes zero in β →∞ and n →∞. Note that the higher-order estimator
has a larger statistical error. Thus, we need to carefully confirm the convergence as
we will see in the following example.

Let us check the validity of the estimators. Figure 4.2 shows the estimated triplet
gap w.r.t. temperature T in the spin-Peierls model (3.15) with parameters L = 4,
ω = 4, λ = 1/2, D = 4, where D is the cutoff of the boson occupation number and it
is restricted less than D in the simulation. One hand, the conventional second moment
seems to converge to a wrong value at T = 0 because of the systematic error. The
improved gap estimator, on the other hand, converges to the exact value. Surprisingly,
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Fig. 4.2 Triplet gap (S = 1) of the spin-Peierls model 3.15 w.r.t. temperature with parameters
L = 4, ω = 4, λ = 1/2, D = 4, where D is the cutoff of the boson occupation number. The boson
number in the simulation is restricted less than D. The periodic boundary condition is used, and
the true value calculated by the exact diagonalization method is shown together. The each-order
estimator is calculated by different simulations. The higher order gap estimators converge to the
exact value much more rapidly than the usual second moment n = 0

http://dx.doi.org/10.1007/978-4-431-54517-0_3
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the higher order estimators already converge in relatively high temperature. As we
see, the introduced gap estimators powerfully perform and enable us to apply the
correct level spectroscopy analysis.

4.4 Demonstration in Alternating-Bond Model

We demonstrate, in this section, the usefulness of the level spectroscopy in the fol-
lowing S = 1 alternating-bond model:

H =
N∑

r=1

J (1− β(−1)r )[Sx
r Sx

r+1 + Sy
r Sy

r+1 +κSz
r Sz

r+1]. (4.41)

In order to understand the phase diagram with the hidden Z2 × Z2 symmetry, we
introduce the one-dimensional quantum Ashkin-Teller model

HAT = −β

N∑
r=1

[σ z
r σ z

r+1 + τ z
r τ z

r+1 + λσ z
r σ z

r+1τ
z
r τ z

r+1] −
N∑

r=1

[σ x
r + τ x

r + λσ x
r τ x

r ],
(4.42)

where σ
x,z
r , τ

x,z
r are Pauli matrices. This Hamiltonian is invariant under σ z ↔ −σ z

and τ z ↔ −τ z transformations, holding Z2×Z2 symmetry. A duality transformation

σ̃ x
r+1/2 = σ z

r σ z
r+1, σ̃ z

r+1/2 =
∏
ν<r

σ x
ν , (4.43)

τ̃ x
r+1/2 = τ z

r τ z
r+1, σ̃ z

r+1/2 =
∏
ν< j

τ x
ν (4.44)

gives the relation between the parameters as

HAT(λ, β) = βHAT(λ, 1/β). (4.45)

On the line β = 1, the system has the self-duality as in Fig. 4.3. According to
Kohmoto, den Nijs and Kadanoff [27], the quantum Ashkin-Teller model (4.42) can
be mapped to the S = 1/2 X X Z chain model with bond alternation, which is the same
form with the Hamiltonian (4.41), through the relation κ = λ, β = (1−β)/(1+β)).
The Gaussian critical line corresponds to the β = 0 line (1/

→
2 < κ < 1), and the

bifurcation point (κ = 1, β = 0) to the 2D Ising critical lines exists as in Fig. 4.3.
The universality class of the point is the k = 1, SU (2) Wess-Zumino-Witten (WZW)
model [2, 49].

An effective model of the spin-S X X Z chain model with bond alternation [41] or
the quantum Ashkin-Teller model [22] is the double-frequency sine-Gordon model:
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Fig. 4.3 Phase diagram of the quantum Ashkin-Teller model (left) and the S = 1/2
alternating-bond model (right). In the left panel, there is the Gaussian critical line (β = 1,
−1/
→

2 < λ < 1) of continuously varying critical exponents. At the end of the line (β = 1,
λ = 1), this line breaks up into two 2D Ising critical lines. The Gaussian critical line separates the
fully ordered and the fully disordered phases of the Z2 × Z2 symmetry, and a partial symmetry is
broken over the Ising critical lines. The left figure is taken from Ref. [27], and the right figure from
Ref. [39]

HSG2 = v

2λ

∫
dx

[
K (λΠ)2 + 1

K
(ρxφ)2

]
+ y1v

2λa2

∫
dx cos

→
2φ

+ y2v

2λa2

∫
dx cos

→
8φ. (4.46)

The correspondence to the bond alternation model is as y1 ≤ β, (4.8), and (4.9). To
the quantum Ashkin-Teller model, on the other hand, it is as

y1 ≤ 1− β

1+ β
, K = λ

arccos λ
, (4.47)

shown in Ref. [27]. Delfino et al. [13] and Fabrizio et al. [15] showed that the
renormalization-group trajectory flows to the Gaussian fixed point when the cos

→
2

term is relevant but the cos
→

8 term is irrelevant. Then the fixed point is changed to
the Ising type once the cos

→
8 term becomes also relevant. This property is essential

to also the criticality of the spin-Peierls model; the static alternation changes the
universality class of the phase transition.

Here, we demonstrate the level spectroscopy for the isotropic case (κ = 1) of
the S = 1 alternating-bond model, combining with the QMC technique and the new
gap estimators introduced in the last section. The phase transition from the Haldane
phase to the dimer phase occurs at a finite alternation βc. Affleck and Haldane [1, 3]
mapped this model to the nonlinear O(3) σ -model. They showed that the topological
angle α is given by α = 2λ S(1 − β) and the system should be massless when
α/2λ is half odd integer. Numerically, Kato and Tanaka [24] obtained the critical
point at βc = 0.25 ± 0.01 and c ∀ 1 by using the density matrix renormalization
group. Yamamoto [50] showed a consistent result by the QMC method. Totsuka
et al. [47] identified the universality class as the SU (2) k = 1 WZW model. More
precisely, Kohono et al. [28] estimated βc = 0.2595(5) by the QMC calculation for
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the susceptibility, and Nakamura et al. [32] obtained βc = 0.25997(3) by using the
interesting order parameter that characterizes the valence-bond states.

As a noteworthy research, Kitazawa et al. [26] identified βc = 0.2598 by observing
the level crossing from small-size data L ∈ 16, where L is the number of spins. They
clarified the critical dimensions corresponding to each symmetry operation from the
renormalization equations as in Fig. 4.4 and succeeded in eliminating the logarithmic
correction. In the right table, q, Sz

T , P , and T represent the wavenumber, the total
Sz , the parity of the space inversion, and the spin reversal, respectively. We observe
the level crossing of the two excitations [25], (Sz

T = 0, P = 1, T = 1) and (Sz
T = 0,

P = −1, T = −1) under the Φ = λ twisted boundary condition (TBC) [16, 29]:

Sx
L+1 = Sx

1 cos Φ − Sy
1 sin Φ (4.48)

Sy
L+1 = Sx

1 sin Φ + Sy
1 cos Φ. (4.49)

In the QMC method, under the TBC, the sign of the weight becomes nega-
tive when the winding number of the worldlines is odd. Then we simulate under
the periodic boundary condition (PBC) and reweight the averages as conducted
for the usual negative sign problem. Figure 4.5 shows the ground state (ST = 0,
Sz

T = 0, where ST represents the total spin) energy and the singlet gap labeled as
ST = 1, Sz

T = 0 under the TBC measured from the ground state energy under the
PBC. These energy gaps meet at the critical point; that is the system is gapless under
the TBC (doubly degenerated). Note that the wavenumber of the doublet excitation
state (ST = 1, Sz

T = ±1) is shifted, under the TBC [29], in λ/L and it has a gap. It is
clear that the conventional second moment (n = 0 in the figure) has a large gap from
the peak of the ground state energy near the transition point, but the higher-order
estimators get close to it. We, here, need to be reminded that the parities of the space
inversion and the spin reversal for the ground state and the singlet excited state under
the TBC are changed across the transition point [26]. That is, for the singlet state,
the symmetries are even in the Haldane phase, but odd in the dimer phase. For the
ground state, on the other hand, they are odd in the Haldane phase but even in the
dimer phase, which is clear in the Schwinger boson picture [4]. Therefore, the first
excitation state that belongs to each parity switches with each other.

The level-crossing point between the two excitations, (Sz
T = 0, P = 1, T = 1)

and (Sz
T = 0, P = −1, T = −1) under the TBC, is shown w.r.t. 1/L2 in Fig. 4.6

together with the crossing point zL = 0, where zL is the order parameter proposed
by Nakamura et al. [32]. They identified the transition point by extrapolating the
crossing point zL = 0 to L → ∞. As for our calculation, we expected that the
transition point is located near β = 0.26 from Fig. 4.5 as expected from the previous
results. Then, we estimated the crossing point of the two excitations by interpolating
the data at β = 0.25 and 0.27. On one hand the zL = 0 point suffers from the
logarithmic correction and does not seem to converge to the true value from these
size data (they concluded βc = 0.25997(3) from the simulations up to L = 320).
We see, on the other hand, the crossing point converges near the expected value very
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Fig. 4.4 Phase diagram of the S = 1 alternating-bond model (left) and the table of the relation
between the symmetry operations and the operators in the sine-Gordon model (right). We demon-
strate the level crossing at the phase transition between the Haldane phase and the dimer phase for
κ = 1. The symbols q, Sz

T , P , and T are explained in the body text. The two operators with * in
the right are defined under the Φ = λ twisted boundary condition. The top operator M is a special
marginal operator that is the Lagrangian density for the free field theory. These figures are taken
from Ref. [26]
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Fig. 4.5 Ground state under the TBC (E(λ)) and the singlet k = λ, ST = 1, Sz
T = 0 excited state

energy under the TBC (n = 0, 2, 4, 6) measured from the ground state energy under the PBC for
L = 12 and β = 1.5L . The ground state energy E(λ) rises up, but the singlet gap dips down at
the transition point. The former energy catches the state with the symmetry (Sz

T = 0, P = −1,
T = −1) in the Haldane phase, but (Sz

T = 0, P = 1, T = 1) in the dimer phase. On the other hand,
the singlet state does the state with the symmetry (Sz

T = 0, P = 1, T = 1) in the Haldane phase,
but (Sz

T = 0, P = −1, T = −1)

rapidly. Remarkably, the crossing point does not much depend on the order of the gap
estimator. It is because of the special symmetry near this transition point, which is
manifested in the invariance of the renormalization group equation [23, 26] under the
transformation y1 → −y1. We should calculate the higher orders for general cases.
Moreover, we can identify the universality class by the level spectroscopy using the
several excitation gaps although we do not show here. As we have seen, the level
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Fig. 4.6 Level crossing point between the two excitations, (Sz
T = 0, P = 1, T = 1) and (Sz

T = 0,
P = −1, T = −1) under the TBC together with the crossing point zL = 0, where zL is the order
parameter proposed by Nakamura et al. [32]. The level crossing powerfully detects the transition
point even in small systems

crossing or spectroscopy is drastically powerful for systems with strong finite-size
effect.

Finally, we mention an application of the meron cluster algorithm [6, 9, 10]. The
TBC produces the sign problem since the worldline configuration with an odd wind-
ing number has a negative weight. In order to overcome the sign problem, the meron
cluster algorithm was invented and applied to a O(3) model with topological term [6]
and some fermionic systems [9, 10]. The meron is defined as a cluster that inverts the
sign of the weight by flip (the absolute value is not changed). The idea of the meron
algorithm is that the sampled state is restricted to only configurations without the
merons because configurations with the merons does not contribute to any statistical
average. Note that the simulation where the configuration is strictly restricted to the
space without any meron suffers slowing down of the sample efficiency; that is the
ergodicity is practically broken. Then, actually, the configurations with the merons
are allowed, and averages are reweighted by means of the multicanonical method.
This intriguing cluster algorithm is also applicable to the quantum spin system under
the TBC, as our case in this section. This application of the meron algorithm will
perform well in combination with the level spectroscopy.
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Chapter 5
XXZ Spin-Peierls Chain

5.1 Background of Spin-Peierls System

The spin-lattice interaction introduces spin frustration as we mentioned in Chap. 1.
As a system dominated by the spin-lattice interaction, a spin-Peierls system has
caught the attention for a long time. The low-energy physics is described by the
S= 1/2 one-dimensional antiferromagnetic (κ > 0) XXZ or Heisenberg chain model
coupled with the lattice degree of freedom in the harmonic potential as

H =
∑

r

J

(
1+

√
γλ

2

(
ar + a†

r

)) (
Sx

r+1Sx
r + Sy

r+1Sy
r +κSz

r+1Sz
r

)+∑
r

γa†
r ar .

(5.1)
Here we use the dispersionless (Einstein) phonon in this chapter. The validity for the
real materials, such as CuGeO3 [2, 25, 28, 46, 50, 53], is discussed in Refs. [21, 62].
When the decrease in energy by dimerization, forming spin singlet pairs, exceeds
the increase by lattice distortion, the spin-Peierls system turns into the dimer phase,
which is called the spin-Peierls transition. This formation of the singlet pairs, cer-
tainly, results from the quantum nature of the spin degree of freedom; that is, such a
dimer order cannot take place for classical spin models. The investigation of this non-
trivial system consisting of the multiple degree of freedom will give us an important
understanding of frustrated quantum spin systems.

In the spin-Peierls system, the quantum effect of the lattice degree of freedom
is controversial. The hybridization of the two degrees of freedom depends on the
difference of the energy scales. The adiabatic limit corresponds to the case where the
phonon energy scale is much lower than the spin energy scale (actually formed spin-
gap scale) and the quantum nature of the lattice degree of freedom can be ignored [16].
In this limit, the lattice degree of freedom is nothing but a classical parameter in the
model, and the phase diagram is the same with the S = 1/2 alternating-bond spin
model (4.41), where there is no spin frustration. This spin model can be mapped to
the sine-Gordon model, and the spin-lattice coupling, which is relevant in the theory,
instantaneously drives the ground state into the dimer phase. This result is totally
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consistent with the Cross-Fisher theory [16]. On the other hand, the antiadiabaticity
produces the effective spin frustration, which is manifest after tracing out the phonon
degree of freedom. The role of quantum nature of lattice has been investigated by
many theoretical approaches: the perturbation expansion [30], the linked cluster
expansion [52], the Lanczos diagonalization method [3, 4, 8, 61], the flow equation
method [44, 45, 54], the unitary transformation [59, 60, 64], and the density matrix
renormalization group (DMRG) [9, 14, 27, 41, 59]. In the antiadiabatic limit, a
simple effective model is the J1-J2 model [30] whose phase diagram was explained
in Sect. 4.2 by mapping to the sine-Goldon model. The main role of the next-nearest
interaction is to reduce the marginal term in the field theory. Then, the Kosterlitz-
Thouless (KT) [29] transition from the Tomonaga-Luttinger (TL) liquid phase to the
dimer phase occurs [19] when the marginal term becomes zero.

Here, let us write down the parameter in the effective spin Hamiltonian in the
antiadiabatic limit in according to Ref. [18, 60] using the Schrieffer-Wolff transfor-
mation. The ratio Π = J2/J1 of the effective J1-J2 model after tracing out the phonon
degree of freedom in the spin-Peierls model (5.1) for κ = 1 becomes

Πeff ∈ λ/4γ + 3λ2/64γ − 37λ2/384γ2

1+ λ/4− λ/4γ − 3λ2/32γ + 28λ2/384γ2 , (5.2)

up to the second order of λ and 1/γ.
We investigate the phase diagram and transition in the crossover region between

the two limits in this chapter. For the intermediate region, the self-consistent har-
monic approximation [15, 17, 36] and the renormalization group (RG) method
[5, 13, 15, 19, 51] have been applied to an effective action derived by tracing out the
phonon degree of freedom. Particularly, Sun et al. [51] solved numerically the RG
equations of an effective bosonized action and obtained the phase diagram of the XXZ
spin-Peierls model over the whole adiabaticity. About this analysis, however, Citro
et al. [15] expected that the result was not correct because an invalid scaling [57]
was used. The phase diagram needs to be investigated by a more reliable approach.
Also experimentally, some realistic materials have been found where the ratio of the
spin and phonon energy scales is away from the two limits, such as CuGeO3 and
MEM(TCNQ)2 [26, 55, 56]; the mechanism of the phase transitions are still con-
tentious [22, 42, 43]. Accurate calculation for the intermediate region, however, has
been difficult because of the complexity of the system. The conventional quantum
Monte Carlo (QMC) methods [31, 34, 35, 40, 45, 48] cannot calculate it efficiently as
we explained in Chap. 3. For overcoming the difficulty, we have developed the QMC
method for nonconserved particles, extending the worm (directed-loop) algorithm.
We have successfully eliminated the cumbersome bounce (rejection) process of the
bosonic worm scattering that has been a bottle neck in the method. Moreover, we
have, now, the level spectroscopy that will powerfully extract the transition point and
critical phenomena of the KT transition. Making the most of these novel methods,
we unambiguously elucidate the critical phenomena of the XXZ spin-Peierls chain,
which has been discussed for a long time, in the following sections.
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5.2 Isotropic Case

5.2.1 Conventional Analyses

The phase boundary for the isotropic case κ = 1 has been investigated by the
several methods [41, 44, 45, 59, 60]. As analytical calculation, an effective spin
model is derived by using the flow equation [54] or the unitary transformation [60]
and the boundary is determined as the point where the ratio Π = J2/J1 becomes
0.2411 [38]. Numerically, the vanishment of the spin gap [14] or the level crossing
of the excitations [41, 59] is investigated by the density matrix renormalization group
method.

By the QMC method, however, it has been difficult to determine the transition
point accurately. For the isotropic point, the phase transition is expected to be the KT
type [13]. The Binder ratios [6, 7] for different sizes, which intersect at the critical
point, just merges over the KT transition since the TL liquid phase is everywhere
critical. Figure 5.1 shows the spin stiffness and the Binder ratio of the staggered
operator m = ∑

r(−1)rSz
r+1Sz

r w.r.t. the spin-phonon coupling. The stiffness is
defined as

ρs = 1

L

φ2F(β)

φβ2 , (5.3)

which is the spin-rotation susceptibility of the free energy (the ground state energy
at T = 0). This quantity can be measured as the winding-number fluctuation in the
QMC method [23, 24]. The Binder ratio is defined as the moment ratio

U = ⊂m
2→2
⊂m4→ , (5.4)
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Fig. 5.1 Spin stiffness (left) and the Binder ratio (right) w.r.t. the spin-phonon coupling λ for
κ = 1, γ = 1/4, Δ = 2L. It is extremely difficult to find the transition point from these data
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which becomes 1/3 for a disordered phase and 1 for a fully ordered phase in the
thermodynamic limit. This staggered operator functions as the dimer order parameter.

About our simulations, we set J = 1 through this thesis. Here, we use the energy
unit as

Jeff = J (1+ Π⊂q→)

= J

(
1+

√
γλ

2
(⊂a+ a†→)

)
(5.5)

for the stiffness. Quantities are sampled typically during more than 106 Monte Carlo
steps after 105 thermalization steps (burn-in period). We run more than 10 or 60
simulations independently for each parameter. The error is estimated by the binning
analysis [32] using much larger bin sizes than actual correlation time. The bare
phonon excitation gap is set γ = 1/4 here for the comparison with the previous
calculation [48].

In general, it is extremely difficult to find the merge point of the Binder ratio. A
moderately better way to detect the KT transition point by the Monte Carlo method
[20, 23, 24, 39, 58] is to observe the universal jump of the spin stiffness [37, 49].
Although the dumping is seen in the figure, it is necessary to simulate very large
systems to confirm the discontinuous jump at the critical point. As we have seen, the
usual Monte Carlo analysis cannot catch the KT transition point of the spin-Peierls
model.

For the isotropic case, Sandvik et al. [48] determined the boundary by the QMC
method as the special point where the staggered spin susceptibility grows in propor-
tion to the system size, which is defined as

αsz = 1

L

∑
i,j

(−1)i−j
∫ Δ

0
dν ⊂Sz

i (ν )Sz
j →. (5.6)

This behavior comes from the absence of the marginal operator after mapping to
the sine-Gordon model (4.2); in the TL liquid phase except the critical point, the
marginal operator gives the logarithmic correction to the correlation functions [11].
We plot the spin susceptibility (5.6) and the dimer susceptibility,

αsd = 1

L

∑
i,j

(−1)i−j
∫ Δ

0
dν

〈
(Si · Si+1)(ν )(Sj · Sj+1)

〉
, (5.7)

for several sizes w.r.t. the spin-phonon coupling in Fig. 5.2. There seems, as expected,
a crossing point of the both quantities detecting the vanishment of the logarithmic
correction. Although this analysis is effective, it is still difficult to determine the
precise boundary because the intersection is slightly shifting as the system size
increase.

http://dx.doi.org/10.1007/978-4-431-54517-0_4
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Fig. 5.2 Spin (staggered) susceptibility (5.6) and the dimer susceptibility (5.7) w.r.t. the
spin-phonon coupling for γ = 1/4, Δ = 2L. The both quantities are expected to intersect at
the transition point because of the absence of the marginal term, but the crossing point is slightly
shifting as the system size increases. We can estimate the point as λc √ 0.23, which is consistent
with the previous calculation [48] as 0.1764 < λc < 0.2304

5.2.2 Precise Phase Boundary by Level Spectroscopy

We determine the precise phase boundary for the isotropic case by observing the
level crossing calculated by the QMC technique. As Okamoto and Nomura [38]
introduced for the first time, we calculate the energy gaps of the S = 1 triplet
state and S = 0 singlet state with wavenumber k = π . In the QMC method, the
triplet gap is easily accessible. The correlation functions (4.12) and (4.16) with
Ô = Sz

π ∝
∑

r Sz
reikr

∣∣
k=π

can be calculated by simple measurements of the current
worldline configuration because it is a diagonal operator. The singlet state is ruled
out by this operation; that is,

⊂S = 0|Sz
k|gs→ = 0, (5.8)

where the ground state and a S = 0 singlet state are expressed as |gs→ and |S = 0→,
respectively. For the singlet excitation, on the other hand, it is not trivial what operator
we should use. In our spin-Peierls model, we can elicit the S = 0 singlet excitation
by using several operators, such as, (S · S)k , (qS · S)k , nk , qk , and so on. It should
be pointed out that the systematic error and the convergence of the gap estimators
strongly depend on the used operator although the same gap and state are taken. It
is because the spectral weight, which is expressed as b
 after Eq. (4.21), is different
according to the operator. Figure 5.3 shows the singlet-gap estimator (n = 2), which
was defined as Eq. (4.26) in Sect. 4.3, w.r.t. temperature for different parameters. It
is seen that the convergence rate for T → 0 of the estimators strongly depends on
the operator and parameter. Thus, we choose practically the lowest gap, comparing
the several gap estimators below.

About the detail calculations, we calculate the correlation function at the
Matsubara frequencies (γj = 2π j/Δ) of (S · S)k and (qS · S)k by integrating the

http://dx.doi.org/10.1007/978-4-431-54517-0_4
http://dx.doi.org/10.1007/978-4-431-54517-0_4
http://dx.doi.org/10.1007/978-4-431-54517-0_4
http://dx.doi.org/10.1007/978-4-431-54517-0_4
http://dx.doi.org/10.1007/978-4-431-54517-0_4
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Fig. 5.4 Triplet and singlet gaps (n = 2) of the several system sizes w.r.t. the spin-phonon coupling
for γ = 1/4, Δ = 2L. The two gaps intersect at a spin-phonon coupling depending on the system
size

phase factor (eiνγj ) of the operator at imaginary time ν on the worldlines; they are
one of the operators of the Hamiltonian. The diagonal operator nk is measured by
the same way as Sz

k . The off-diagonal operator qk is measured by the bosonic worm;
when the worm head moves on the worldlines from ν1 to ν2, it gets the integrated
phase

∫ ν2
ν1

dνeiνγj . Then, we reweight it by the same way with other off-diagonal
measurements explained in Sect. 3.4.4.1.

The calculated triplet and singlet gaps are shown in Fig. 5.4 for γ = 1/4, Δ = 2L.
The first excited state is changed from the triplet to the singlet, and the two gaps
intersect at a spin-phonon coupling depending on the system size. Then, the crossing
point int the thermodynamic limit is precisely extrapolated from the finite-size data
as shown in Fig. 5.5. The finite-size correction term is derived from the irrelevant
operators [10–12, 47] and the dominant correction is from the operators of critical
dimension x = 4.

http://dx.doi.org/10.1007/978-4-431-54517-0_3
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We check the correctness of the estimated transition point by calculating the
critical dimensions of the operators and identifying the universality class. From the
conformal field theory [10], the critical dimension is related, for the periodic boundary
condition (PBC), to the excitation gap as

(κE)
(L) = 2πvx


L
, (5.9)

where v is the spin velocity. We call the excitation of S = Sz = 0 as the dimer
excitation, S = 1, Sz = 0 as the Néel excitation, and S = 1, Sz = ±1 as the doublet
excitation below. For the isotropic case, now, the Néel and the doublet excitation
form the triplet excitation. First, we calculate the velocity from the triplet excitation
of the smallest wavenumber:

v(L) = L

2π
κEk= 2π

L
= v + O(L−2). (5.10)

Figure 5.6 shows the calculated velocities for each system size and the extrapolation
for L→↑. We set the spin-phonon coupling as λ = 0.225. The all (except n = 0)
order estimators seem to converge to the same value, which is expected from the
excitation spectrum in the liquid phase; there is no continuum excitation just above the
lowest excitation of the smallest wavenumber in the bulk limit. Thus, the systematic
correction of the gap estimator vanishes in the limit.

Then, we define a quantity corresponding to the critical dimension as

x
 = L

2πv
(κE)
 (5.11)
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Fig. 5.7 Critical dimensions of the triplet and singlet excitation. They converges to a value close to
1/2 in the thermodynamic limit, which is consistent with the k = 1 SU(2) WZW model. Remarkably,
the conventional second moment (n = 0) fails to get the correct value

using the lowest excitations (κE)
 with k = π . Figure 5.7 shows the calculated
critical dimensions of the triplet and singlet excitations, where the dimension is well
estimated from the higher order estimators for each system size. The both seem to
converge to a value close to 1/2 derived from the k = 1 SU(2) Wess-Zumino-Witten
(WZW) [1, 63] model. This is expected from the analogy with the J1-J2 model. Let
us check also the central charge from the finite-size correction of the ground state
energy [1, 11, 33] as

E0(L) = E0 − πv

6L2

(
c+ b

(ln L)3

)
+ higher order. (5.12)

The estimated value is shown in Fig. 5.8, calculated from the two fitting. We estimate
the central charge as c = 1.01(2), which is consistent with the free-boson (sine-
Gordon) field theory (c = 1).
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We estimate the central charge as c = 1.01(2), which is consistent with c = 1 of the free-boson
(sine-Gordon) field theory

The critical dimensions and the central charge are both totally consistent with
the k = 1 SU(2) WZW model. Therefore, we confirm the the power of our level
spectroscopy analysis by the QMC method and accuracy of the transition point,
which we estimate here as λc = 0.225(2). This value is much more precise than the
previous calculation [48] as 0.1764 < λc < 0.2304 in our model. In the meantime,
if we apply the unitary (Schrieffer-Wolff) transformation [60] from the spin-Peierls
model to the effective spin model, the obtained transition point here corresponds
to J2/J1 √ 0.18 from Eq. (5.2); it is smaller than 0.2411 in about 25 %. The level
spectroscopy analysis can quantitatively treat the spin-Peierls model beyond the
simple effective spin model.

5.3 Liquid-Dimer Transition

Next, we consider the XY anisotropic case 0 < κ < 1. In this parameter
region, also, it is expected that the KT transition occurs from the TL liquid phase
to the dimer phase as the spin-phonon coupling is strengthened. At the critical
point, the logarithmic correction appears in contrast to the isotropic case. Figure 5.9
shows the spin stiffness and the susceptibilities for κ = 3/4, γ = 1/4. In the right
figure, the doublet susceptibility defined as

αs+ = 1

L

∑
i,j

(−1)i−j
∫ Δ

0
dν ⊂S+i (ν )S−j →. (5.13)

is shown together with the dimer susceptibility (5.7). This quantity is measured by
the spin worm; the integrated phase factor is summed when the worm head moves on
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action axis (left) and the extrapolation of the crossing point (right)

the worldlines. Note that we have to add another phase π that is related to the gauge
rotation on the z-axis; the sign of the wave function is actually changed for the QMC
simulation. Thus we reweight the sign to get the original correlation functions.

It is almost no way to analyze this phase transition for the easy-plane parameter
region by the conventional method. Utilizing the level spectroscopy, we can correctly
investigate also this case. Figure 5.10 shows the level crossing between the doublet
and dimer excitations together with the extrapolation. As the isotropic case, we can
extrapolate a transition point in the thermodynamic limit.

The calculated spin velocity is shown in Fig. 5.11 when we set the spin-phonon
coupling λ = 0.364 (later 0.368). The velocity is estimated from the Néel excitation
with the smallest wavenumber, which is statistically better than the doublet excitation.
Note that the lowest dispersion curve of the doublet and Néel excitation will be the
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Fig. 5.12 Critical dimensions of the doublet (upper left panel), the dimer (upper right panel), and
the Néel (lower left panel) excitation together with the combined quantity (lower right panel). There
seem some logarithmic correction in each excitation, e.g., the rapid decrease of the Néel critical
dimension in the large-size data. For the combined quantity, however, it seems to converge to 1/2
in proportion to 1/L2 without logarithmic correction. Note that the second moment (n = 0) has so
large systematic error that the extrapolated value is not correct

same as the simple XXZ spin model. Then, the critical dimensions of the doublet,
the dimer and the Néel excitation are shown in Fig. 5.12 together with a combined
quantity defined as (xneel + xdimer + 2xdoublet)/4. If the critical point belongs to the
k = 1 SU(2) WZW model, the each critical dimension will behave as mentioned in
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Fig. 5.14 Combined critical
dimension for λ = 0.368. It
seems to converge to a slightly
larger value than 1/2. From
such a check, we estimate the
error of the transition point as
λc = 0.365(3)
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Ref. [1]

xdoublet = xdimer = 1

2
− 1

4 ln L
(5.14)

xneel = 1

2
+ 3

4 ln L
. (5.15)

Thus the logarithmic correction is eliminated in the combined dimension. In the
figure, although the each dimension seems to have some logarithmic correction (rapid
variation in the large-size data), the combined quantity smoothly converges to 0.5
without logarithmic correction.

We check also the central charge as in Fig. 5.13. The charge is estimated as c =
0.95(5). From the above calculations, we conclude this phase transition is the k = 1
SU(2) WZW type. The emergent SU(2) symmetry appears here, which the original
Hamiltonian does not hold. This is the same scenario with the J1-J2 and sine-Gordon
model.
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Let us also check the accuracy of our analysis. Figure 5.14 shows the combined
dimension in the case where we set the spin-phonon coupling as λ = 0.368.
The combined quantity seems to converge to a slightly larger value than 1/2. From
such a check, we estimate the critical point as λc = 0.365(3).

5.4 Néel-Dimer Transition

Next we investigate the Ising-anisotropy (κ > 1) case. Figure 5.15 shows the Binder
ratio of the Néel and dimer excitation for κ = 3/2. It is seen that there is a transition
point where the ratios become invariant of the system size. Although this transition
does not seem the KT type, it is still difficult to determine the precise transition point.

We observe the level crossing of the Néel and dimer excitation. The extrapolation
of the crossing point is shown in Fig. 5.16, where the finite-size data are scaled well.
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Fig. 5.17 Estimation of the spin velocity by the extrapolation from the finite-size data
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Fig. 5.18 Critical dimensions for κ = 3/2, γ = 1/4, λ = 0.517, Δ = 1.5L. The dimensions of the
dimer and Néel become the same value in L → ↑ at the transition point in this Ising anisotropic
case. The convergence to a value close to 1/4, about the combined dimension, implies that this
transition is the Gaussian universality class

Assuming the transition point as λc = 0.517, let us check the universality class.
First, we estimate the spin velocity by the extrapolation as shown in Fig. 5.17. Then,
we calculate the critical dimensions, using the estimated velocity. If this transition
point is the Gaussian universality (free boson) class, the critical dimensions become
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Fig. 5.19 Estimation of the central charge for κ = 3/2, γ = 1/4, λ = 0.517. The two largest
data (blue dots) are used on the left panel with b = 0, and the four largest data (blue dots) are used
on the right panel taking the logarithmic-correction term into account. We can estimate the value
c √ 1.0, which is consistent with the free-boson field theory
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Fig. 5.20 Extrapolation of the level crossing point between the Néel and dimer excitation for
κ = 1.1, γ = 1, Δ = 1.5L. The higher order estimator ξ̂ (10) (4.31) is used

xdoublet xneel = 1/4 (5.16)

xneel = xdimer . (5.17)

In the first equation, the Luttinger parameter is canceled. Then, we check the con-
vergence of a combined dimension xdouble (xneel+ xdimer). The right bottom panel in
Fig. 5.18 shows it converges to a value close to 1/4 as expected.

We check also the central charge. Figure 5.19 shows the charge is estimated as
c √ 1.0, as expected. Thus, we conclude this phase transition is the Gaussian uni-
versality class and the transition point is λc = 0.517(2).

In the meanwhile, Sun et al. [51] obtained the phase diagram of the XXZ spin-
Peierls model by numerically solving the renormalization group equation for an
effective model. The most interesting point of their conclusion is that the two phase

http://dx.doi.org/10.1007/978-4-431-54517-0_4
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Fig. 5.21 Combined critical dimensions for κ = 1.1, γ = 1, λ = 0.956, Δ = 1.5L. The left panel
shows this

Fig. 5.22 Phase diagram of the XXZ spin-Peierls model. The arrow indicates the flow of the
renormalization. The Gaussian line is a set of fixed points, and the critical exponents (dimensions)
continuously varies on the line. Compare it with the phase diagrams of the J1-J2 model in the
antiadiabatic limit (Fig. 4.1) and the alternating-bond model in the adiabatic limit (Fig. 4.3)

transitions occur as the spin-phonon interaction increases for small Ising anisotropy:
the Néel phase, the TL liquid phase, and the dimer phase. In other words, the liquid
phase runs off the edge of the Heisenberg point κ = 1. Then, we set parameters
as κ = 1.1, γ = 1, and the apply the same analysis with the case of κ = 3/2.
We confirm the doublet-excitation gap is always larger than the Néel excitation gap,
which is corresponding to the Luttinger parameter K < 1 in Eq. (4.2). The level
crossing point of the Néel and the dimer excitation is well extrapolated as shown in
Fig. 5.20. We check the combined critical dimensions that catch the SU(2) WZW
model or the Gaussian universality as in Fig. 5.21. Although the comparison of the
values is tricky, we can see the extrapolated value is not 1/2 on the left panel, but
very close to 1/4 on the right panel. Therefore, we conclude this transition is not the
WZW model but the Gaussian universality class. We expect the liquid phase ends at
the isotropic line κ = 1.

http://dx.doi.org/10.1007/978-4-431-54517-0_4
http://dx.doi.org/10.1007/978-4-431-54517-0_4
http://dx.doi.org/10.1007/978-4-431-54517-0_4
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Finally, we discuss the crossover between the two limits. As we show the
universality classes by the level spectroscopy, we expect the phase diagram of the
XXZ spin-Peierls model as Fig. 5.22. Although we have investigated mainly the rel-
atively adiabatic region γ = 1/4, we expect this phase diagram is qualitatively valid
for any adiabaticity of the phonon. Since this phase diagram is totally consistent with
the J1-J2 model as shown in Fig. 4.1, which is an effective model in the antiadia-
batic limit, it will be continuously connected to the adiabatic limit, where the phase
boundary is λc → 0 for κ ↓ 1. The Gaussian universality line for κ > 1 remains
in the adiabatic limit, and it becomes the Ising universality class if we consider the
static alternation as discussed in Sect. 4.4 and shown in Fig. 4.3. Now let us remind
that we have calculated the spin-Peierls model without the negative sign, and we
obtain the phase diagram consistent with the frustrated spin model. Thus, we can
correctly investigate the critical phenomena of the frustrated quantum spin system
without any approximation. In other words, we are successful in avoiding the cum-
bersome negative sign by introducing the quantum phonon. This fact encourages us
to apply our method to more complex systems. We will investigate multi-chain and
two-dimensional spin-Peierls systems in Chap. 6.
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Chapter 6
Multi-Chain Spin-Peierls Systems

6.1 Simulation for Dispersive Phonon

We consider the multi-chain and the two-dimensional spin-Peierls systems in this
chapter. Let us connect the spin-Peierls chain by the lattice interaction. The Hamil-
tonian is expressed as

H =
∑

r

J (1+ αqr)Sr+ex · Sr +
∑

r

[
p2

r

2m
+ c

2

(
q2

r + γy(qr+ey − qr)
2

+γxy(qr+ex+ey − qr)
2 + γxy(qr−ex+ey − qr)

2
) ]

, (6.1)

where x axis is the spin-chain direction and y axis is perpendicular to the chain
direction. The parameters γx > 0 and γxy > 0 are the ratio of the spring constant
between atoms, and the other parameters are defined as before, in Chap. 3. We
consider an optimal phonon mode with a gap ω = ∈cm and the isotropic case
(Δ = 1). This extension from the one-dimensional model is reasonable because the
usual lattice structure does not have a strong low-dimensional feature in contrast to
the electron interaction that would have it depending strongly on the orbital shape;
that is why the atoms form the lattice. Our purpose in this chapter is to correctly
investigate an effectively frustrated two-dimensional spin model by means of the
developed methods in this thesis.

We, here, rewrite the Hamiltonian for efficient QMC simulation. Let us perform the
Fourier transformation for the lattice degree of freedom and the second quantization
in the reciprocal space. Then we again perform the inverse Fourier transformation to
the real space. Finally the Hamiltonian (6.1) is exactly transformed as

H =
∑

r

J (1 + α
∑
r ⊂

R(r − r ⊂)(ar ⊂ + a†
r ⊂))Sr+ ex ·Sr +

∑
r

∑
r ⊂

K (r − r ⊂)a†
r ar ⊂ ,

(6.2)
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where the coefficients R(r − r ⊂) and K (r − r ⊂) give the nonlocal spin-phonon and
the phonon-phonon interaction, respectively. They are defined as

R(r − r ⊂) = 1

N

∑
k

√
1

2mωk
eik·(r − r ⊂) (6.3)

K (r − r ⊂) = 1

N

∑
k

ωk eik·(r − r ⊂), (6.4)

where ωk is the phonon dispersion:

ωk =
√

c

m

(
1+ 2γy(1− cos ky)+ 2γxy(1− cos(kx + ky))+ 2γxy(1− cos(ky − kx ))

)
.

(6.5)

Here, the amplitude of R(r) and K (r) is dumped exponentially with r = |r|. About
the signs, R(r) > 0 →r , K (0) > 0, and K (r) < 0 (r √= 0). Remind us that the
number of the spin-phonon interaction operators on the worldlines is always even.
Thus, the sign of R(r) does not matter if they are the same. On the other hand, the
boson hopping (off-diagonal) terms K (r)(r √= 0) multiplied by (−β) gives a positive
weight. Although the diagonal term (K (0)) is positive, we can avoid the negative
weight by including the term into H0 in the continuous-time representation (3.5) as
we did in Chap. 3. Therefore, no negative sign appears. Note that the sign problem
emerges for very strong spin-phonon coupling region, but such a parameter set is
beyond the scope of this model.

In order for the hopping term to appear on the worldline, we prepare a combined
operator L(r − r ⊂) as

L(r − r ⊂) = K (r − r ⊂)
2

⎡
⎢a†

r ar + a†

r ⊂ ar ⊂ + 1

2
+ a†

r ar ⊂ + ar a†

r ⊂

⎣
⎤. (6.6)

Using this operator, we rewrite the lattice term in the model as

∑
r

∑
r ⊂

K (r − r ⊂)a†
r ar ⊂ =

∑
r

⎥
K (0)+ Koff

2

⎦
a†

r ar +
∑

r √=r ⊂
L(r − r ⊂),

(6.7)

where

Koff = −
∑

r √=r ⊂
K (r − r ⊂). (6.8)

We can efficiently change the type of operators on the worldlines by the worm thanks
to this operator separation; the weights of the diagonal part and the off-diagonal part

http://dx.doi.org/10.1007/978-4-431-54517-0_3
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of L(r − r ⊂) are always in the same order. In more detail, we insert L(r − r ⊂) as

L(r − r ⊂)diagonal = K (r − r ⊂)
4

(
a†

r ar + a†

r ⊂ ar ⊂ + 1
)

(6.9)

during the diagonal update. Then we alter it by the worm to

L(r − r ⊂)off−diagonal 1 = K (r − r ⊂)
2

a†
r ar ⊂ (6.10)

or

L(r − r ⊂)off−diagonal 2 = K (r − r ⊂)
2

ar a†

r ⊂ . (6.11)

In the simulation for S = 1/2 and Δ = 1, we set the diagonal exponential term (H0)
and perturbation term (V ) in Eq. (3.5) as

H = H0 + V (6.12)

H0 =
∑
r

⎥
K (0)+ Koff

2

⎦
a†

r ar . (6.13)

V =
∑

r

J̃ (1+ α̃
∑
r ⊂

R(r − r ⊂)(ar ⊂ + a†
r ⊂))(Sr+ex · Sr − 1

4
)

+
∑

r √=r ⊂
L(r − r ⊂), (6.14)

where

J̃ = J − J 2α2

4c
(6.15)

J̃ α̃ = Jα. (6.16)

In the simulation, we control the parameter ω = ∈c/m, and λ = α2/c as the
same with before. The differences from the one-dimensional simulation are only the
following two points: the boson hopping term and the (exponentially-decaying) non-
local interactions. In the diagonal update, we insert/remove the diagonal operators
of the Hamiltonian as mentioned in Sect. 3.4.2. The matrix elements of L(r − r ⊂)
vary on the imaginary time and have no upper weight because the phonon is now
expressed as a soft-core boson. Then we set a guiding weight, at each Monte Carlo
step, for the insertion/removal of the diagonal terms of L(r − r ⊂); that is, we use a
constant intensity instead of the exact value at each imaginary time for efficiency,
which is allowed as we explained in the section. When we choose an operator for
the insertion, we use an efficient algorithm called Walker’s method of alias [2] and
succeed in significantly reducing the CPU time cost coming from the non-local
interaction. In the off-diagonal update, on the other hand, the bosonic worm hops

http://dx.doi.org/10.1007/978-4-431-54517-0_3
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to a different site. When the worm warps or the bug starts/finishes, we consider the
interaction between different spin sites and boson sites with weights R(r − r ⊂).

6.2 Unfrustrated Multi Chain

Let us consider, first, an unfrustrated case where γy √= 0, γxy = 0. We investigate
if an order takes place by introducing the interchain phonon interaction to the liquid
chain. The parameters are set as ω = 1/4, λ = γy, β = L and we vary λ and γy

simultaneously. Let us see the two-chain (ladder) case. Figure 6.1 shows a moment
ratio defined as

U1 = 〈mβ〉2
〈m2

β〉
, (6.17)

where

mβ(k) = 1

N

∑
r,r ⊂

⎛ β

0
dτ Ô†

r(τ ) Ôr ⊂ e
ik·(r−r ⊂). (6.18)

We use the dimer operator Ôr = Sr+ex · Sr in the expression. This ratio functions as
the same with the Binder ratio. In the figure, the dimer order k = (π, 0) develops as
the spin-phonon coupling increases, but it is difficult to conclude the transition point
from this data.
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Fig. 6.1 Moment ratio (6.17) of the dimer order parameter Ôr = Sr+ex · Sr of k = (π, 0) for
ω = 1/4, β = L , γx = λ, γxy = 0. The dimer order develops rapidly as the spin-phonon
coupling increases
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Fig. 6.2 Histogram of the dimer order parameter (6.19) for λ = γy = 0.5 (left) and λ = γy = 0.1
(right). The value is normalized so that the integration becomes 1 in the continuous limit. For the
strong coupling, the order (π, 0) clearly develops. Also for the weak coupling, the asymmetry of
the distribution is observed, which indicates it is the ordered phase

Then, we define an order parameter as

χd = mβ(π, 0)− mβ(π, π), (6.19)

using Ôr = Sr+ex · Sr. This quantity, which is nothing but the difference of the
susceptibility between k = (π, 0) and k = (π, π), detects the dimer pattern.
Figure 6.2 shows the histogram of this order parameter for different parameters.
The value is normalized so that the integration becomes 1 in the continuous limit.
For the both cases (λ = γy = 0.5, λ = γy = 0.1), the asymmetry of the distribution
is observed. From the above simulations, we expect that the dimer order takes place
for infinitesimal interchain phonon coupling.

We discuss the mechanism of the instantaneous effect. The interchain interaction
effectively introduces the biquadratic spin interaction, which is derived from the
perturbation. An effective ladder model, then, is expressed as

H =
∑

j=1, 2

∑
n

⎜
J1 S j, n · S j, n+1 + J2 S j, n · S j, n+2

⎝

+
∑

n

J4(S1, n · S1, n+1)(S2, n · S2, n+1). (6.20)

The graphical picture of the model is depicted in Fig. 6.3. Here, J1, J2 > 0, and
J4 < 0 [6]. In the continuum limit with the bosonization, this Hamiltonian decou-
ples into four massive real fermionic fields, or equivalently, four noncritical 2D Ising
models with underlying SU (2)× Z2 symmetry [9]. Nersesyan and Tsvelik [6] dis-
cussed the phase diagram of the spin model with the J4 term and also the interchain
bilinear spin interaction. On one hand, the J2 term corresponds to the marginal oper-
ator in the theory as discussed in Sect. 4.2. The J4 term, on the other hand, is relevant
(the dimension is 1). Therefore, the interchain phonon interaction instantaneously

http://dx.doi.org/10.1007/978-4-431-54517-0_4
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Fig. 6.3 Picture of the effective spin model (6.20) after tracing out the phonon degree of freedom.
In addition to J1 and J2 (interactions within the chain), the interchain phonon interaction introduces
the J4 term in the model

introduces the gap and the spinon confinement [4]. This explanation will be valid for
unfrustrated multi-chains and the two-dimensional system (infinite chain).

6.3 Frustrated Multi Chain

Next, we investigate the frustration effect of the spin-Peierls model in this section. The
frustration of the interchain interaction can restore the characteristic one-dimensional
features. As one of them, the spinon deconfinement in the frustrated spin models
has been discussed in many papers [1, 5, 7, 10, 11]. We set the parameters of the
interchain phonon interaction as γy = 2γxy ; that is, the interaction is fully frustrated.
The lattice-interaction bonds are shown in Fig. 6.4 (the spins are omitted).

The left panel in Fig. 6.5 shows the histogram of the order parameter (6.19) for
the frustrated ladder γy = 2γxy = 0.04, λ = 0.1, ω = 1/4, β = L . No order
and asymmetry is observed in the distribution. For a strong spin-phonon coupling

Fig. 6.4 Picture of the lattice-interaction bonds in the model (6.1). The spin chain extends in x
direction, which in not drawn in the figure. When the ratio is as γy = 2γxy , the interchain interaction
is fully frustrated
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Fig. 6.6 Histogram of the order parameter for the frustrated 4-chain (left) and 6-chain (right)
system. The number of peaks (6.21) is consistent with the 2n-degenerated ground-state case for
n = 4, 6

λ = 1.2 on the right panel, on the other hand, the double-peak structure appears. This
structure shows the uncorrelation between the chains and the 4 degenerated ground
state; that is, the 2 states with k = (π, 0) and the 2 states with k = (π, π) have
the same energy (Z2 × Z2). In order to confirm this degeneracy, we also investigate
the histogram for the 4-chain and 6-chain system as shown in Fig. 6.6. Here, if we
assume the 2n degeneracy for the n-chain system, we can show the number of peaks
a(n) should be

a(n) =
{

k(k + 1) n = 4k − 2
k(k + 1)+ 1 n = 4k.

(6.21)

We see the number of peaks in the figure matches the above expression: a(4) = 3 and
a(6) = 6 (we confirmed also more chain cases). Thus, the quantum phase transition is
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Fig. 6.7 Level crossing
between the S = 1 triplet
gap and the S = 0 singlet
gap for the frustrated ladder
with γy = 2γxy = 0.1, ω =
1/4, β = L . The index n
corresponds to the order of the
gap estimator as Eq. (4.31).
The transition point is roughly
extrapolated as λc ↑ 0.37,
which differs from the single
chain case
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expected to occur at a finite coupling constant with the spontaneously Z2n symmetry
braking.

We then observe the level crossing between the S = 1 triplet excitation gap and
the S = 0 singlet excitation gap for γy = 2γxy = 0.1 as shown in Fig. 6.7. Since
the chains are uncorrelated, the singlet excitations in y direction are degenerated.
The crossing point is scaled as the same way with the one-dimensional case. We can
estimate the transition point as λc ↑ 0.37. Remarkably, this value differs from the
single-chain case λc = 0.225(2) in Sect. 5.2. Nevertheless, the interchain phonon
interaction does not introduce the chain-chain correlation. In the meanwhile, Batista
and Trugman [1] showed the exact ground state of a frustrated two-dimensional spin
system and the spinon deconfinement at the transition point between the two valence
bond crystal phases. We expect, also in this model, the spinon is not confined by
the frustration effect of the interchain interaction in contrast to the unfrustrated case.
Thus the level crossing and spectroscopy analysis will be effective for this case as
the same with the single-chain system.

6.4 Two-Dimensional System

Furthermore, we investigate the two-dimensional (infinite chain) frustrated system.
It is expected that the phase diagram is qualitatively the same with the frustrated
ladder system because the chains are uncorrelated. Figure 6.8 shows the level
crossing between the triplet gap and singlet gap for L = 4W, γy = 2γxy =
0.04, ω = 1/4, β = L , where L and W is the number of spins/atoms in x and y
direction, respectively. The crossing point in the thermodynamic limit can be extrapo-
lated as λc ↑ 0.28 that differs from the single chain case in a similar way to the ladder.
In this two-dimensional case, the broken symmetry is not trivial, which is correspond-
ing to Z2W (W ↓ ∞). The ground state in the ordered phase is macroscopically
degenerated. From the above calculations, we conclude the quantum phase transi-
tion occurs from the 1D−like (spin) liquid phase to the macroscopically-degenerated

http://dx.doi.org/10.1007/978-4-431-54517-0_4
http://dx.doi.org/10.1007/978-4-431-54517-0_5
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Fig. 6.8 Level-crossing points for L = 4W, γy = 2γxy = 0.04, ω = 1/4, β = L . The crossing
point in the thermodynamic limit can be extrapolated as λc ↑ 0.28 that differs from the single chain
case in a similar way to the ladder

dimer phase at the finite spin-phonon coupling. The both phases on the fully frustrated
line (γy = 2γxy) are located at the boundary between the doubly-degenerated dimer
(valence bond crystal) phases as in Fig. 6.9. In the spin liquid phase, on one hand, the
spinon is deconfined. In the macroscopically-degenerate phase, on the other hand,
the vison [3, 8] will appear as the exotic excitation.

Fig. 6.9 Expected ground-state phase diagram of the two-dimensional spin-Peierls system. The
phase diagram consists of the 4 phases: the doubly-degenerated dimer phase with k = (π, 0)

(γy − 2γxy > 0), k = (π, π) (γy − 2γxy < 0), the 1D-like spin liquid phase with the deconfined
spinon (γy = 2γxy, λ < λc), and the macroscopically-degenerated dimer phase (γy = 2γxy,

λ > λc)
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6.5 Discussion

Finally, let us discuss the order of magnitude for the effective spin interaction. From
the perturbation expansion for the interchain lattice interaction, the effective inter-
chain spin interaction J4 for the unfrustrated case (6.20) is expanded as

J4 ↑ a1λγy + a2λγ 2
y + · · · , (6.22)

where a1 and a2 are coefficients independent of λ and γy . As we have seen for the
unfrustrated cases, the asymmetry of the order parameter distribution is clearly seen
for λ = 0.5, γy = 0.5, L = β ∞ 32 and for λ = 0.1, γy = 0.1, L = β ∞ 96 in
Sect. 6.2. On the other hand, it is not so clear for λ = 0.1, γy = 0.1, L = β = 48.
Thus, the order of the coefficient for ω = 1/4 can be roughly estimated as a1 ↑ O(1).
For the frustrated ladder, no asymmetry is observed for λ = 0.1, γy = 2γxy =
0.04, L = β ∀ 192 as shown in Sect. 6.3. These sizes are likely not enough to
conclude that the biquadratic J4 term cancels for the frustrated case because the
next order term a2λγ 2

y is smaller than 1/β with the assumption that a2 is also in
O(1). Moreover, the higher-order effective spin interactions are also in O(λγ 2

y ).
Therefore, the precise calculation for larger system sizes and the detailed expression
of the effective spin model are needed for the decisive conclusion. Also for the two-
dimensional case, the calculated system sizes and the inverse temperatures may not
be enough to conclude the ground state.

In order to assess the dimer order degeneracy, we have simulated the ladder sys-
tems with stronger interchain lattice interaction, γy = 2γxy = 4, λ = 1, L = β.
The dimer order parameter distribution is presented in Fig. 6.10; it is symmetric
again until L = 192. This result implies that there is no dimer order in the thermo-
dynamic limit because even the much higher order terms do not lift the degeneracy.
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Fig. 6.10 Histogram of the order parameter for the frustrated ladder for γy = 2γxy = 4,

ω = 1/4, λ = 1, β = L . No dimer order appears even with this stronger interchain lattice
coupling parameters
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Furthermore, not only the ladder but also the two-dimensional system as investigated
above is to be liquid. Therefore, the interesting phase diagram (Fig. 6.9) is expected
to be correct.

As we have discussed the order of the effective interaction, the ground state of
such a frustrated system is difficult to clarify. However, we insist here that our results
are free from approximation except the tiny bias from the MCMC scheme. Thus it
is possible to observe the nontrivial quantum states appearing on the fully-frustrated
line at very-low temperatures experimentally.
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Chapter 7
Summary

In this thesis, we have developed the novel Monte Carlo methods and investigated
precisely the critical phenomena of the spin-Peierls systems. The key theme is that
the quantum lattice fluctuation introduces the spin frustration. The concept of the
Peierls transition originates from the simple but drastic property about the instability
to dimerization of the one-dimensional metal as early as 50’s. The lattice degree of
freedom, there, was treated adiabatically; that is, it was approximated as a classical
parameter. Over 1970’s, it was experimentally shown that the quasi one-dimensional
quantum spin system can realistically dimerize through the spin-lattice interaction.
The adiabatic approximation based on the mean-field treatment was effective for the
dimerization mechanism of the organic materials. The discovery of the first inorganic
spin-Peierls material CuGeO3 [1] in 1993 brightly shed light on the importance of the
quantum nature of the lattice degree of freedom. It has been shown that the quantum
spin system is antiadiabatically perturbed by the quantum phonon, and acquires
effective frustration that gives birth to various nontrivial physics in the condensed
matter, such as the spin-Peierls transition.

The complexity of the multi-degree of freedoms has hindered the precise inves-
tigation of the quantum spin-phonon systems. Our result in the present thesis is the
significant progress in the analysis of the spin-phonon systems. We can simulate the
spin-Peierls models without any systematic error and investigate the phase transi-
tions accurately. Our modifications were mainly on the following three points: the
new optimization algorithms of the Markov chain transition kernel based on the geo-
metric weight allocation, the extension of the worm (directed-loop) algorithm for
nonconserved particles, and the quantum Monte Carlo level spectroscopy.

On the first point, we have invented the several algorithms that always minimize
the average rejection rate in the Markov chain Monte Carlo method in Chap. 2. We
demonstrated that our algorithm is the best update method so far for the single spin
update of the Potts model and the worm algorithm of the Heisenberg model under the
magnetic field, compared to the several existing methods. Also for the spin-Peierls
model, the sampling efficiency is significantly improved. Our optimization scheme
using the geometric allocation is totally different from the conventional optimization
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method. The usefulness of such a geometric approach has been shown beyond the
usual algebraic approaches. In the meantime, the Markov chain Monte Carlo method
has evolved within the paradigm of the detailed balance since the invention in 1953
by Metropolis et al. This condition is, however, not necessary. Our algorithm is the
first versatile method that satisfies the total balance without imposing the detailed
balance. We have shown the extension of the algorithm to continuous variables.
These new methods will improve the efficiency of almost all kinds of the Markov
chain Monte Carlo methods in the future.

About the second point, we have extended the worm algorithm, as a more general
method than ever, to nonconserved particles in Chap. 3. The lattice degree of freedom
has been treated by the so-called path integral Monte Carlo method so far, where
the real-space coordinate basis is used. However, the many problems have deterred
efficient calculation and the analysis of the critical phenomena have been extremely
difficult. Then, it is a good way to use the second quantization taking the advan-
tage of the discrete nature of the quantum phonon. In the spin-Peierls system, the
transformed phonon (soft-core boson) is not a conserved particle in the Hamiltonian.
Unfortunately, the conventional worm algorithm cannot treat such a nonconserved
particle efficiently. We, thus, have extended the worm update to satisfy the ergod-
icity and made it possible to measure the nontrivial correlation functions without
any systematic error. By this improved scheme, the large-scale spin-Peierls systems
became, for the first time, accessible by the quantum Monte Carlo method.

On the third point, we have proposed the new gap estimators and the combined
method with the level spectroscopy in Chap. 4. In the one-dimensional spin-Peierls
system, the Kosterlitz-Thouless transition occurs where the conventional Monte
Carlo analyses break down because of the strong finite-size effect. As a powerful
method for the Kosterlitz-Thouless transition of one-dimensional quantum systems,
the level spectroscopy was invented by Nomura et al. [2]. The critical dimensions
being combined for eliminating the problematic logarithmic correction, it becomes
possible to extrapolate the transition point accurately and to identify also the uni-
versality class. Meanwhile, the accurate gap estimation is inevitable if we apply the
quantum Monte Carlo method to the level spectroscopy. It is, however, far from
trivial to estimate it without systematic error. Then, we have proposed the new gap-
estimator sequence that systematically approaches to a true value, and succeeded
in combining the two methods. As a demonstration, we have shown the level spec-
troscopy for the alternating-bond model and determined the transition point from
much smaller system-size data than the previous Monte Carlo analysis.

In Chap. 5, we have investigated the one-dimensional XXZ spin-Peierls system.
The accurate analysis of the large-scale spin-Peierls systems and the phase transition
becomes feasible, for the first time, by applying the above three methods. We have
determined the phase boundary much more precisely than ever for the isotropic
case (Δ = 1). Meanwhile, for the XY -anisotropic case (Δ < 1), there has been
no effective method for investigating the critical phenomena. Taking advantage of
the level spectroscopy, we have determined the transition point and the universality
class as the k = 1 SU (2) Wess-Zumino-Witten model, where the emergent SU (2)

symmetry appears. Also for the Ising-anisotropic case (Δ > 1), the universality class
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has been identified as the Gaussian universality. From the above detailed calculations,
we obtained the phase diagram (Fig. 5.22) of the model, and confirmed that it is totally
consistent with the J1 − J2 model, which is an effective model in the antiadiabatic
limit. Furthermore, the previous result [3] by the renormalization-group method was
checked and we carefully modified it. From these calculations, we have concluded
that the phase diagram should continuously connect from the antiadiabatic limit to the
adiabatic limit where the Tomonaga-Luttinger liquid phase collapses on the line and
the diagram becomes the same with the alternating-bond model. From the viewpoint
of the computability, we are successful in investigating the critical phenomena of
the effectively frustrated quantum spin system by the quantum Monte Carlo method
without the negative sign.

Furthermore, we have investigated the multi-chain systems connected by the inter-
chain lattice interaction in Chap. 6. For the unfrustrated ladder case, we have observed
that the dimer order rapidly develops with the lattice interaction. In order to detect
the dimer order more sensitively, we defined the order parameter that is the differ-
ence of the dimer susceptibilities with the different wavenumber. Through the close
check of the order parameter histogram and the dimension analysis of the effective
spin model in the continuum limit, we concluded that the interchain phonon inter-
action instantaneously drives the ground state into the doubly degenerated dimer
phase. For the fully frustrated ladder case, on the other hand, no order and asym-
metry was observed for small spin-phonon coupling in the distribution of the order
parameter. For large coupling, however, clearly the double-peak structure appears,
which indicates the uncorrelation between the chains and the spontaneously Z2× Z2
symmetry breaking. We confirmed the 24 and 26 degeneracy in the 4-chain and
6-chain cases, respectively. The level-crossing point between the triplet and singlet
gap was scaled as the same with the single chain case. We estimated the transition
point that significantly differs from the single chain case. Therefore, the interchain
phonon interaction indeed plays some role to the critical phenomena although it does
not introduce the interchain correlation. Finally, we calculated the two-dimensional
(infinite number of chains) case where the number of chains are increased as the
chain length. We confirmed again that the level-crossing point is surprisingly scaled
as the same with the single chain case, but the extrapolated point differs from the
one-dimensional case. Thus, we obtained the expected phase diagram (Fig. 6.9) of
the two-dimensional system where the quantum phase transition from the 1D-like
spin-liquid phase to the macroscopically-degenerated dimer phase occurs on the fully
frustrated line that separates the two doubly-degenerated dimer phases. As an exotic
excitation, the deconfined spinon and the vison will play an essential role to the
low-energy physics in the liquid phase and the degenerated phases.

For a long time, the accurate analysis of the frustrated quantum spin systems
has been impossible in most cases because of the complexity and the negative sign
problem. Through this thesis, we have acquired a powerful method to the spin-Peierls
or the effectively frustrated spin system without any approximation. Our method will
surely clarify nontrivial features of the frustrated spin systems further.
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